Life Sciences Building Prof. Andres Lepage

Structural Option The Pennsylvania State University, University Park, PA October 29, 2007

Technical Assignment II Structural Study of Alternate Floor Systems

Life Sciences Building The Pennsylvania State University, University Park, Pennsylvania

Executive Summary

This report is a study of alternative floor systems for the Life Sciences Building at The Pennsylvania State University – University Park Campus, University Park, Pennsylvania. The building was designed from 1999 and completed in 2004. The building is 'L' shaped, 6 floors (97') tall, and 154,000 GSF with a mechanical penthouse and has concrete floors with a steel frame using composite floor deck, composite beams and composite girders.

Five alternative systems with a reasonable chance of being considered as part of the final structural proposal were investigated in depth for the Life Sciences Building. They are Pre Cast Hollowcore Plank on Steel Beams, Concrete Flat Slab with Drop Panels, Post Tensioned Concrete Flat Plate, Concrete Waffle Slab, and Composite Steel Deck on Composite Steel Beams.

The conclusions reached through analysis, design, and research into the different floor systems are that only two of the five systems that were considered in detail are viable alternatives for the Life Sciences Building. The five systems were first designed for a typical bay using simplified methods because the purpose of this assignment was to be a schematic / preliminary design to help gather information for later decisions. After the five systems were designed they were compared using criteria such as self weight, depth, deflections, relative cost, fire resistance, vibration, how well moment frames can be integrated into the floor construction, and how easily they can accommodate irregularities in framing. The final conclusion of Technical Assignment II for the Life Sciences Building was that the post tension concrete flat plate and composite steel deck on composite structural steel framing were the only two options that should be studied further.

Life Sciences Building Prof. Andres Lepage

Table of Contents

<u>Page</u>	Description
1	Cover Page / Executive Summary
2	Table of Contents
3	Building Description
4	Building Diagrams
5	Existing Structural System Description
9	Material Strengths
10	Building Codes / Standards
11	Live Load
12	Dead Load
13	IBC Code Requirements / Fire Resistance
14	Fire Resistance Requirements for Concrete / Steel
15	Typical Bay
16	Floor Systems Considered
17	Pre Cast Hollowcore Plank on Steel Beams
18	Concrete Flat Slab with Drop Panels
19	Post Tensioned Concrete Flat Plate
20	Concrete Waffle Slab
22	Composite Steel Deck on Composite Steel Beams
23	Table: Comparison of Alternate Floor Systems
24	Final Recommendations
27	Appendix A – Pre Cast Hollowcore Plank on Steel Beams
33	Appendix B – Concrete Flat Slab with Drop Panels
41	Appendix C – Post Tensioned Concrete Flat Plate
49	Appendix D – Concrete Waffle Slab
58	Appendix E – Composite Steel Deck on Composite Steel
	Beams

Building Description

The Life Sciences Building at The Pennsylvania State University, University Park Campus, University Park, Pennsylvania is a six story steel frame structure that is roughly shaped like an "L". The longer leg of the "L" runs in an east – west direction across the northern edge of the site. The shorter leg of the "L" runs north – south along the west central portion of the site. There is also an attached mechanical vault structure at the end of the long leg of the "L" and a two level above grade connection that ties into the knuckle of the "L".

The building can be conveniently broken down into three sections. The first section – referred to herein as "the long leg of the 'L'" – is the part of the building running east – west along the northern edge of the site occurring to the east of column line C. The long leg of the 'L' contains the bulk of the labs, offices and classrooms. The second section – referred to herein as "the knuckle" – is the part of the building that runs east – west along the northern edge of the site and occurs to the west of column line C. "The knuckle" is also the part of the building where the above grade connection to the Chemistry Building ties into the Life Sciences Building. The third and final section – referred to herein as "the short leg of the 'L'" – is the part of the building that runs north – south along the west central portion of the site and ties into the knuckle at its northern end.

Other notable features of the Life Sciences Building include the two story above grade connection to the adjacent Chemistry Building which occurs on the third and fourth floors. A one level mechanical vault was constructed along with the building at its lowest level and is located on the top of the long leg of the "L" (far east side of building). This mechanical vault is constructed entirely of reinforced concrete and its roof is used as a loading dock / truck parking area for the Life Sciences Building. A greenhouse is located on the top of the short leg of the "L" (southernmost portion of building).

Floors of the Life Sciences Building will be referred to in this and all subsequent reports by using the following convention:

В	Basement	1150'-0"
V	Vault	1156'-6" **
G	Ground Floor	1166'-8"
1	First Floor	1180'-8"
2	Second Floor	1194'-8"
3	Third Floor	1208'-8"
4	Fourth Floor	1222'-8"
Ρ	Penthouse	1236'-8"
R	Roof	1263'-0"

** mechanical vault area attached to and constructed with Life Sciences Building which is located adjacent to main structure with a roof used as a loading dock area.

Kirk Stauffer Life Sciences Building Prof. Andres Lepage

Structural Option

The Pennsylvania State University, University Park, PA October 29, 2007

Existing Structural System Summary

Foundation

The Life Sciences Building uses a combination of several foundation types to adapt to several different base slab elevations and varying subsurface conditions.

The vault area of the building is built on a continuous reinforced concrete mat foundation. Columns and walls of the vault will bear on thickened portions of the mat foundation. The mat foundation will have a thickness of 2'-0" and be reinforced with #6 and #7 bars at 12" o.c. The bearing capacity of the soil underneath the mat foundation is 2 ksf for exterior walls and 2.5 ksf for columns.

The foundation of the long leg of the "L" will consist primarily of reinforced concrete spread footings. The maximum allowed bearing pressure on the soil underneath the spread footings is 6 ksf. Underneath walls the foundation ranges from 1'-6" to 2'-3" thick and from 5'-6" to 10'-2" wide. To support columns the spread footings range from 1'-7" to 4'-0" thick and from 5'-6" to 17'-4" wide.

To support the rest of the building, including the knuckle and short leg of the "L", footings are supported on driven steel H – piles. The soil bearing capacity is considered to be 6 ksi on the gross section area of the steel H – pile (and the skin friction value is currently unknown). The piles used are HP10x57 and HP12x74 sections with allowable working loads of 100 k and 130 k respectively. Piles are driven in groups to an average depth of 25' and capped. Piles are driven vertically in the center of pile caps and battered outward on the perimeter of pile caps on a 1:6 (H:V) batter. The piles are arranged in groups of 2,3,4,5,6,8,11, and 16. The pile caps are reinforced concrete and range in thickness from 3'-0" to 5'-0" deep. Grade beams span between pile caps to support the exterior walls.

Floor Framing

The typical basement slab on grade is 6" of 4000 psi concrete on 6" of PennDOT 2A aggregate reinforced with WWF6x6 – W4xW4. The typical ground level slab on grade is 5" of 4000 psi concrete reinforced with WWF6x6 – W2.9x2.9. The typical floor deck is composite 18 gage, 2" thick fluted with 4-1/2" of concrete cover for a total thickness of 6-1/2". The concrete is normal weight, 4000 psi with one layer of WWF4x4 – W5.5xW5.5. All beams and girders are composite steel wide flange sections using 5" long, $\frac{3}{4}$ " diameter shear studs welded directly to the beam. The shear studs have a shear transfer capacity of 13.3 k/stud.

The basement level of the Life Sciences Building only occurs underneath the long leg of the "L". The basement level of the long leg of the "L" and ground floor level of the short leg of the "L" and knuckle are slabs on grade. Slabs on grade in the basement are typically 6" concrete reinforced with one layer of welded wire fabric. Slabs on grade at ground level are typically 5" thick.

Existing Structural System Summary (continued)

Beginning with the ground floor level of the long leg of the "L" the floor framing system takes on a typical layout. This framing system is typical and occurs on the ground through fourth floors. The typical floor deck is composite 18 gage, 2" thick fluted with 4-1/2" of concrete cover for a total thickness of 6-1/2". The concrete is normal weight, 4000 psi with one layer of WWF4x4 – W5.5xW5.5. Infill beams for the ground through fourth floors are typically composite W16x26 (spaced 8'-0" o.c.) and composite W16x31 (spaced 8'-8" o.c.) with a built in camber and span of 31'-0". The girders supporting the W16x26 infill beams are composite W24x68 and span 31'-0".

The knuckle floor framing system starts with a typical slab on grade on the first floor. The framing for the second through fourth floors consists of the typical composite floor system bearing on W21x44 composite beams. Due to the knuckle not being square the span of the W21x44 beams ranges from roughly 34' to 38' and their spacing is between 8' and 9'.

The framing of the short leg of the "L" is typical on the second through fourth floors, but becomes quite complex on the ground floor to accommodate an auditorium with a sloped floor. The floor framing system for the second through fourth floors of the short leg consists of the typical composite floor system bearing on composite W14x22 infill beams. The W14x22 infill beams are spaced at 8'-8" o.c. and span 20'-8". They are supported by W21x57 composite girders which span 26'-0". Each girder supports two infill beams at third points.

The mechanical penthouse level occurs at the top of the long leg of the "L". The penthouse houses air handlers and various other pieces of mechanical and electrical equipment. The penthouse was designed for comparatively heavy live and dead loads so the beams and girders are much larger than the typical floor framing for the long leg of the "L". The penthouse floor structure begins with the typical composite floor deck and slab that can be found throughout the rest of the building. This slab bears into various W18 infill beams ranging from composite W18x40 to W18x97 (used to frame around openings in the slab). The most typical infill beams are W18x46 and W18x50 but larger sizes are also common where slab openings exist or support structures for the mechanical equipment bear down on the infill beam. The typical span of the beams and girders is 31'. The girders are most typically composite steel W33x141 and W33x201.

Existing Structural System Summary (continued)

Roof Framing

The typical roof deck is 20 gage, 1-1/2" deep, wide rib steel roof decking. The roof consists of low roofs that are framed as part of the mechanical penthouse floor system. From the low roof, set back in from the building perimeter, a sharply angled roof / wall goes up to form the enclosure of the mechanical penthouse. On the top of the space created by the angled roof / walls there is another flat roof to completely enclose the mechanical penthouse. As stated previously the low roof is framed as part of the mechanical penthouse floor system. The sharply angled roof is framed by noncomposite W18x60 girders running at an angle that is more vertical than horizontal. These girders run from the low roof to the top of the mechanical penthouse enclosure and act as beams / columns by forming the walls and supporting the higher flat roof. The girders are spaced at 31'-0". W12x26 infill beams then span horizontally in between the W18x60 girders. The infill beams span the entire 31'-0" space between the girders and are spaced with three equal spaces measured from the low flat roof to the top of the high flat roof. Finally, the top of the mechanical penthouse covered by the high flat roof is framed by W16x40, W16x31. and W16x26 beams in various configurations that allow large openings for the vents that ventilate the laboratories. The flat roofs are both covered with the typical roof deck. The sloped roof / walls are covered with plywood and light gauge steel framing.

Lateral System

The lateral force resisting system (and system of columns) is made up of a combination of braced and moment resisting frames. Due to the complex geometry of the footprint of the building; numerous lateral force resisting systems are located throughout the structure. The building is shaped roughly like an "L" with the long side of the "L" running east to west. A steel moment resisting frame runs along each of the long exterior walls of the building in the east – west direction. Additionally in the east – west direction are three combined moment / braced frames located internally in the short leg of the "L". One moment frame runs east – west to support a section of the building that is isolated due to an expansion joint (isolated section not considered in this report). The total number of frames providing lateral support to the building in the east – west direction is eight.

In the north – south direction, three braced frames located inside the long leg of the "L" provide lateral support. Also, on the east end of the long leg of the "L" a braced frame provides north – south lateral support. In the short leg of the "L" one moment frame runs along each exterior wall. Additionally, in the north – south direction, a braced frame located at the outside corner where the long and short legs of the "L" meet provides additional lateral support. Finally, two braced frames provide north – south lateral load resistance to the portion of the building that is isolated due to an expansion joint. The total number of frames providing lateral support to the building in the north – south direction is nine.

Existing Structural System Summary (continued)

<u>Columns</u>

The system of columns and lateral force resisting system is designed so that very few columns aren't involved in a moment frame or braced frame. Most column loading depends on many more factors than gravity loads. The columns range in size from W10 up to W14. The weights generally vary from 33 lbs/ft to 311 lbs/ft. Estimated column loads vary from 60 k to 1100 k, with most column loads in the range of 200 k to 800 k.

Material Strength

The following material strengths were assumed in the analysis of alternate floor systems for Technical Assignment II unless otherwise noted in individual calculations:

```
Reinforced Concrete
         Compressive Strength
                   f'<sub>c</sub> = 4000 psi
         Reinforcement Bars (ASTM A615 Grade 60)
                   f_v = 60000 \text{ psi}
         Welded Wire Fabric (ASTM A185)
                   f_v = 70000 \text{ psi}
Pre Cast Concrete
         (given in appendix on data sheets)
Structural Steel
         Beams, Columns, Other Framing Members = ASTM A572 Gr. 50
                   F_v = 50 \text{ ksi}
                                                         F_u = 65 \text{ ksi}
         Plates, Bars, Angles = ASTM A36
                   F_v = 36 \text{ ksi}
                                                         F_u = 58 \text{ ksi}
         Structural Tubing = ASTM A500 Gr. B
                                                         F_u = 58 \text{ ksi}
                   F_v = 42 \text{ ksi}
         Structural Pipe = ASTM A501
                   F_v = 36 \text{ ksi}
                                                         F_u = 58 \text{ ksi}
         All bolts will be <sup>3</sup>/<sub>4</sub>" ASTM A325N (threads included)
                   V_n = 15.9 \text{ k/bolt}
         Shear Studs will be 3/4" diameter 5" long
                   V<sub>n</sub> = 13.3 k / stud
Steel Deck
         Roof Deck
                   F_v = 33 \text{ ksi}
         Composite Floor Deck
```

 $F_v = 40 \text{ ksi}$

Building Codes

In the reanalysis of the floor systems for Technical Assignment II the most current building codes at this time will be used. Additionally information provided by manufacturers of products will be used in the analysis and design and incorporated into the appendix containing the calculations they were used for. The following codes will be used extensively in the reanalysis and design of the Life Sciences Building:

Building Code / Loading| International Code Council IBC 2006 American Society of Civil Engineers ASCE 7 – 05

Reinforced / Precast / Postensioned Concrete American Concrete Institute ACI 318 – 05 ACI 216.1 – 97 Concrete Reinforcing Steel Institute CRSI Design Handbook 2002, 9th Edition Precast Concrete Institute PCI Handbook, 6th Edition

<u>Structural Steel</u> American Institute of Steel Construction AISC – 13th Edition Steel Manual

<u>Cold Formed Steel Decking</u> Steel Deck Institute SDI – Steel Deck Institute Design Manual for Composite, Form, and Roof Decks

Other Design Resources

For the analysis of potential floor systems in Technical Assignment II the following design aids were used in addition to the building codes.

<u>Reinforced Concrete</u> Nitterhouse Concrete Products

www.nitterhouse.com

Post – Tensioned Concrete Atlas Prestressing Corp. – Post – Tensioned Concrete Design Workbook

Live Load

Live loads used were recommended values from IBC 2006 and ASCE 7 – 05. Loads from the original design that were higher than recommended values from IBC 2006 and ASCE 7 – 05 were left unchanged from the original design as a conservative assumption. Several loads were specified by the end user of the building and these were not modified. The following lists the live load assumptions that were used in the analysis and design of alternate floor systems:

Assembly Areas	
Fixed Seats	60 PSF
Lobbies / Moveable Seats	100 PSF
<u>Corridors</u>	
All Floors	100 PSF
Classrooms, Labs, Offices	
Reducible Live Load	80 PSF
Partition Load	20 PSF **
Electrical / Mechanical Rooms	
	200 PSF *
<u>Stairs / Landings</u>	
	100 PSF
Storage Areas	
Light Storage	125 PSF *
File Areas	User Defined
Special Storage	User Defined

* Indicates that load is non-reducible because it is a heavy live load according to IBC 2006 and ASCE 7 – 05 (S.4.8.2).

** Indicates that load is non-reducible because it is a partition load which will constantly be applied to the structure (typically applied as dead load for this report for simplification).

Dead Load

Dead loads will be taken as the self weights of the building materials used in the construction of the floor system. The partition load allowance will be added to classroom, lab and office areas and will be considered as part of the dead load for this analysis. Additional superimposed dead loads will be added to the classroom, lab and office areas, as well as added to the structures that are directly above mechanical and electrical rooms. The values used for these superimposed dead loads follow:

Classrooms, Labs, Offices	
Collateral Dead Load	10 PSF
Partition Dead Load	20 PSF
Electrical / Mechanical Rooms	
Collateral Dead Load	30 PSF

IBC Requirements

The occupancy of the Life Sciences Building is IBC Occupancy Group B (the standard occupancy group for college campus buildings). The construction of the Life Sciences Building is IBC 2006 Type II-A which requires the following:

Stories < 5 + 1 (sprinkler allowance) = 6 stories Height < 65' + 20' (sprinkler allowance) = 85' (roof structures and mechanical penthouses may exceed this height)

Floor Area < 37,500 ft² + (sprinkler allowance) + (frontage allowance)

The Life Sciences Building meets all of the above requirements.

Fire Resistance Ratings

IBC Type II-A construction requires the following fire resistances for all of the structural elements of the Life Sciences Building:

Structural Frame	> 1 hour
Bearing Walls Exterior Interior	> 1 hour > 1 hour
Non-bearing Walls	0 hours
Exterior Walls	> 1 hour
Floor Construction	> 1 hour
Roof Construction	> 1 hour

Fire Resistance of Concrete

Adequate fire resistance for cast in place concrete floor designs was ensured by consulting ACI 216.1-97. The following table from ACI 216.1-97 was used to determine the concrete cover to provide a 1 hour fire rating for all of the cast in place concrete floor assemblies.

	Cover ^{A,B} for corresponding fire resistance, in.					
Aggregate type	Restrained Unrestrained					
	4 or less	1 hr	1 ¹ / ₂ hr	2 hr	3 hr	4 hr
	13 - D	Nonpres	tressed		· · · · · ·	·
Siliceous	3/4	3/4	3/4	1	1 ¹ / ₄	15/8
Carbonate	3/4	3/4	3/4	3/4	1 ¹ / ₄	1 ¹ / ₄
Semi-lightweight	3/4	3/4	3/4	3/4	11/4	11/4
Lightweight	3/4	3/4	3/4	3/4	11/4	11/4
		Prestr	essed			
Siliceous	3/4	11/8	11/2	13/4	23/8	23/4
Carbonate	3/4	1	13/8	15/8	21/8	21/4
Semi-lightweight	3/4	1	13/8	11/2	2	21/4
Lightweight	3/4	1	13/8	11/2	2	21/4

Table 2.3-Minimum cover for concrete floor and roof slabs

A. Shall also meet minimum cover requirements of 2.3.1

B. Measured from concrete surface to surface of longitudinal reinforcement

Pre cast concrete fire resistances were determined with information provided by the manufacturer. Information regarding the fire resistance of pre cast concrete units is listed in the appendix on the pre cast specification sheets.

Fire Resistance of Steel

Fire resistance of steel should be provided for each individual floor assembly by choosing an assembly from the Underwriters Laboratories catalog and designing to meet the requirements of Underwriters Laboratories. For most rolled structural steel shapes this will require fireproofing the beams, girders and columns somehow (encasing in gypsum board, spraying on cementitious fire proofing, or painting with intumescent paint). For reinforced concrete on composite steel deck additional fireproofing may or may not be needed depending on the slab thickness, fire rating required and UL assembly chosen. In the basic designs contained in Technical Assignment II additional fire proofing required to be applied to steel beams, deck and other structural elements was recognized but the actual loads were unknown and not considered in the analysis of floor systems.

Typical Floor Framing Bay

The existing typical floor framing bay used in the majority of the Life Sciences Building is a square of 31' on each side bounded on two parallel sides by girders and infilled orthogonally to those girders with beams. Each of the four corners of the square contains a steel column.

The typical bay dimensions of 31' by 31' will be used for Technical Assignment II when considering and designing alternative floor systems for the Life Sciences Building. The locations of columns will not be changed in Technical Assignment II and interior columns will be assumed to be located at the four corners of the typical 31' x 31' interior bay being analyzed. The structure of an interior bay will be analyzed, designed, and compared for several different floor framing systems. A diagram of a typical bay and its existing framing of composite steel deck, beams and columns supporting a concrete slab is shown below:

TYPICAL WTORIOR BAY (31' X 31')

Floor Systems Considered

Below is a flow chart diagramming all of the alternative floor systems that were considered. Calculations were performed for every floor system listed. Some floor systems were not a part of the final considerations because the initial analysis and design showed that they were not physically possible for the layout of the Life Sciences Building. The floor systems that were not considered as one of the final alternatives for this report are listed in **gray**. The floor systems that merited further analysis and comparison in my final recommendations of the report are listed in **black**. Even if a floor system listed was not part of the final comparison the calculations leading to its rejection can be found in the appendix.

Pre Cast Hollowcore Plank on Steel Beams

System Design 10" x 4'-0" Pre Cast Hollowcore Plank (untopped) Span = 31' w18x119 ASTM A572, Gr. 50 Beams Span = 31' Steel Columns

System Statistics

W	=	68.7 PSF
d _{avg}	=	10"
d _{max}	=	29"
\$	=	\$14.53 / ft ²

Design Notes

Pre cast hollowcore plank on steel girders was chosen as the first alternative structural system. The 10" hollowcore plank was pushed almost nearly to its limits to span 31' from beam to beam. The hollowcore plank was sized using information available from Nitterhouse Concrete Products. Either topped or untopped plank could be used, I chose untopped to reduce floor thickness and cut down on the dead load of the floor system. However, using untopped pre cast could cause problems with the floor system being used as a lateral load diaphragm if not installed properly. PCI guidelines for rigid diaphragms will have to be closely followed if pre cast hollowcore plank are used in the untopped configuration. Steel beams were chosen because they offer greater strength, less weight, and a more compact shape than pre-cast beams. The steel beams were sized for deflection using the AISC 13th Edition Steel Manual. Additionally, attempts were made to use the Girder – Slab system of steel beams to support the pre cast plank. However, Girder – Slab is limited to 8" topped or untopped pre cast planks and no 8" plank could carry the loading and span 31'.

- + Able to clear span between girders with 10" depth.
- + No additional fireproofing on plank.
- + Fast and simple construction in any conditions.
- + Controlled fabrication conditions lead to higher quality members.
- + Plank produced within 100 miles of site.
- + Most economical pre cast member for medium spans.
- + Low cost system.
- + Steel girders can still be part of moment frame.
- Small amount of fireproofing on beams, not cost effective.
- Lateral load diaphragm issues.
- Any floor penetrations need to be engineered ahead of construction.
- Long lead time, special plank may need special ordered.

Concrete Flat Slab with Drop Panels

System Design

 10.5" Slab spanning 31' in both directions reinforced w/

 <u>Column Strip – Bottom</u>]
 (23) - #5

 <u>Column Strip – Top</u>]
 (26) - #5

 <u>Middle Strip – Bottom</u>]
 (15) - #5

 <u>Middle Strip – Top</u>]
 (13) - #6

 <u>Drop Panel</u>]
 9" x 10'-4" (square)

 19" x 19" Columns
 19" columns

System Statistics

=	143.7 PSF
=	10.5"
=	19.5"
=	\$17.10 / ft ²
	= = = =

Design Notes

Design began as a concrete flat plate using CRSI 2002. The shear forces required that the flat plat have columns that were 52" x 52" – so concrete flat plate was immediately removed from consideration. The design then shifted toward a concrete flat slab with drop panels. Drop panels were chosen over column capitals to handle the shear because the column capitals do nothing to help increase the moment capacity of the span. Increased moment capacity is important because the span lengths are relatively large and the loading relatively high. The CRSI 2002 tables were entered using a span of 31' and a factored superimposed load of 200 PSF. Four different slab thicknesses and drop panels were considered and the 10.5" slab with 9" thick by 10'-4" square drop panels was considered to be the most suitable and economical for the Life Sciences Building.

- + Thin floor profile.
- + Satisfies required fire rating.
- + Capable of handling relatively large superimposed loading.
- + Thick slab has increased stiffness decreased vibrations.
- + More floor to ceiling height possible.
- + Formwork can be reused.
- + With alterations can combine with concrete moment frame.
- Dead load of system is very high and will require foundation redesign.
- Columns are relatively large.
- Much casting in place ideal conditions desired.
- Formwork required for slab.
- Drop panels require extra formwork.
- Shoring must be left in place for some period.

Post Tensioned Concrete Flat Plate

System Design

8" Slab spanning 31' in both directions reinforced w/ <u>Column</u>| <u>Mid-Span</u>| (25) – 26.6k tendons in both directions (one direction banded, other distributed) 26" x 26" Columns (smaller columns possible with capitals)

System Statistics

W	=	100 PSF
davg	=	8"
d _{max}	=	8"
\$	=	\$15.78 / ft ²

Design Notes

The post – tensioned 8" slab was calculated following an example based on PTI and ACI guidelines provided by Dr. Ali Memari. Because the bays are square (31' x 31') the design of reinforcement and number of tendons determined from analysis is valid for both directions. The post – tensioning puts the interior bay in a fairly large amount of compression – balancing 90% of the slab load – so tension reinforcement is not needed at mid span of the slab. However, minimum reinforcement according to ACI guidelines should be everywhere. The post – tensioning compression is accomplished by (25) 26.6k tendons running in both directions. In one direction they should be banded over the columns, and in the other direction they should be evenly distributed. Negative moment reinforcement is provided by (6) #9 bars distributed over the columns in both directions. Shear where the slab meets the column is controlled by the area of slab intersecting with the columns so the column size of 26' x 26" was used. The column size could be greatly reduced by using column capitals which can be designed in later analyses.

- + Thin floor profile.
- + Satisfies required fire rating.
- + Capable of handling very large superimposed loading.
- + Thick and post tensioned slab has increased stiffness decreased vibrations.
- + More floor to ceiling height possible.
- + Formwork can be reused.
- + With alterations can combine with concrete moment frame.
- + Dead load reduced over reinforced slab with drop panels.
- Columns are relatively large but can be reduced in size with shear capitals.
- Much casting in place ideal conditions desired.
- Formwork required for slab.
- Shoring must be left in place for some period.
- Post tensioning is a long and involved process.

Concrete Waffle Slab

System Design

3" Slab + 16" Ribs - spanning 31' in both directions reinforced w/ <u>Column Strip – Rib Bottoml</u> (1) - #5 & (1) - #6 <u>Column Strip – Slabl</u> (30) - #5 <u>Middle Strip – Rib Bottoml</u> (1) - #4 long bar & (1) - #4 short bar <u>Middle Strip – Slabl</u> (10) - #5 <u>Solid Headl</u> 12'-5" (square) 16" x 16" Columns

System Statistics

=	165.25 PSF
=	19"
=	19"
=	\$22.35 / ft ²
	= = =

Design Notes

The CRSI Design Handbook 2002, 9th Edition was used to design the concrete waffle slab. The load factors differ from the current ACI code so the load combinations that were used in developing the tables were used to find the superimposed load that needs to be used to enter the tables. Deflections were kept within acceptable ranges by using the minimum effective slab thicknesses as suggested by the ACI. It is assumed that any design found in the CRSI manual will result in deflections being within the acceptable ranges. Because waffle slabs are modular in nature (24" and 36" modules) and the span of the bay was 31' in both directions some modifications had to be made so that the tables could be entered. I chose to use 24" modules – 19" dome width – because the smaller modules would allow greater flexibility in the design of my building. First, the bay will be designed with the same number of domes in the waffle slab as there would be if the span was only 30' in both directions (15 domes across the span). To compensate for the extra 1' difference in the domes and the actual span each dome will be spaced slightly farther apart - creating larger ribs. Because the rib size increased the dead load will also increase accordingly. The dead load of the slab assembly is figured in to the superimposed loads in the table to compensate for the larger ribs the added dead load due to increased concrete was calculated and distributed across the area. This additional dead load in PSF was multiplied by the 1.4 dead load factor and added to the superimposed loads that the tables are entered with. The tables were entered with a larger 32' span (to be conservative) and a factored superimposed load of 200 PSF. After numerous trials a design that requires no stirrups in the ribs and no additional shear reinforcement was found - CRSI recommendations.

Concrete Waffle Slab (continued)

- + Thin floor profile throughout span.
- + Space in voids for mechanical and electrical equipment.
- + Satisfies required fire rating.
- + Capable of handling very large superimposed loading.
- + Waffle slab has increased stiffness decreased vibrations.
- + More floor to ceiling height possible.
- + Formwork can be reused.
- + More efficient use of reinforcing steel.
- + With alterations can combine with concrete moment frame.
- Increased dead load.
- Columns are relatively large.
- Much casting in place ideal conditions desired.
- Formwork required for slab and drop panels
- Shoring must be left in place for some period.
- Not very adaptable to variations in design modular units.

Composite Steel Deck on Composite Steel Beams

System Design

<u>Composite Floor Deck</u> 18 gage, 2" thick fluted with 4-1/2" of concrete cover for a total thickness of 6-1/2".

 Concrete Floors|
 150 PCF, 4000 psi w/ WWF4x4 – W5.5xW5.5.

 Infill Beams|
 w16x26 w/ (13) – 13.3k studs

 Girders|
 w24x68 w/ (48) – 13.3k studs

 Columns|
 Standard Steel W Shapes

System Statistics

W	=	74.2 PSF
d _{avg}	=	6.5"
d _{max}	=	30.2"
\$	=	\$26.45 / ft ²

Design Notes

This is the existing structural system of the building. The design was verified using LRFD with the AISC 13th Edition Steel Manual in Technical Assignment I. The calculations can be found in the appendix.

- + No foundation redesign needed.
- + Steel deflections are known and easily calculated.
- + Shoring not usually required.
- + Erection is fast and can be performed in most conditions.
- + Best suited to moment and braced frames.
- + Best suited to irregular column layout and varying spans.
- Long lead time for production and fabrication.
- Requires the use of skilled labor in field.
- Requires spray on fireproofing.

System	Pre Cast Hollowcore Plank on Steel Beams	Concrete Flat Slab with Drop Panels	Post – Tensioned Concrete Flat Plate	Concrete Waffle Slab	Composite Steel Deck on Composite Steel Beams
Self Weight	68.7 PSF	143.7 PSF	100 PSF	165.3 PSF	74.2 PSF
d _{avg}	10"	10.5"	8"	19"	6.5"
d _{max}	29"	19.5"	8"	19"	30.2"
Deflections	ОК	ОК	ОК	ОК	ОК
Cost	\$14.53 / ft ²	\$17.10 / ft ²	\$15.78 / ft ²	\$22.35 / ft ²	\$26.45 / ft ²
Fire Resistance	> 1 hour	> 1 hour	> 1 hour	> 1 hour	> 1 hour
Vibration	Average	Above Avg.	Above Avg.	Best	Average
Moment Frame Integration	Complicated	Possible	Possible	Possible	Possible
Foundation Impact	Low	High	Low	High	None
Easily Accommodate Irregularities	No	Yes	Yes	No	Yes
Further Consideration Necessary	No	No	Yes	No	Yes

Table: Comparison of Alternate Floor Systems

Final Recommendations

From the infinite number of floor systems that could be created by combining different structural geometries, structural systems, and materials within systems – only two potential systems stand out. I feel that the two systems that should be advanced for further study are the existing composite steel deck, beam, and girder construction and the post tensioned concrete flat plate. I will compare all five of the systems that were studied in detail for Technical Assignment II and hopefully provide insight into why I feel only two systems should be given further consideration.

Self Weight

The self weights of the alternatives considered ranged from 165.3 PSF for waffle slab construction down to 68.7 PSF for pre cast concrete on steel beam construction. It was important to keep the self weights as close as possible to or less than the original composite steel system so that the column and foundation system of the building doesn't need to be redesigned very much. For this reason I disqualified the waffle slab and concrete flat slab with drop panel systems from further consideration.

Average System Depth

The average system depth (d_{avg}) is the depth of the system over the majority of the area. For example, the depth of beams and girders that only occur in certain locations was not considered in the calculation of this depth. The average system depth is basically the depth of the slab at some point in the bay away from the columns. The average depth of the original composite steel system was the thinnest profile of all the alternatives at 6.5". The waffle slab was by far the deepest – measured from the top of the slab to the bottom of the ribs – at 19" across the entire bay. Of all the concrete systems – precast, post tensioned or reinforced – the post tensioned slab was the thinnest at 8" which should make it a preferred alternative.

Maximum System Depth

This was the depth of the flooring system alternative at its deepest point – it usually occurred at a girder, drop panel, or other significant structural member. The waffle slab and post tensioned concrete slab performed the best in this category, having maximum depths that are equal to the average depths they have over the entire system. The greatest depth was from the top of the slab to the bottom of a steel composite girder. The smallest maximum depth of all alternatives considered was the post tensioned concrete slab – at only 8" which makes it stand out once again.

Life Sciences Building Prof. Andres Lepage

Final Recommendations (continued)

Deflections|

The deflections of structural members were prescribed by the IBC 2006. All of the concrete structural systems deflections were limited by using the minimum thickness guidelines provided by the CRSI and ACI. The pre cast deflections were confirmed using technical data sheets provided by the manufacturer. Steel beams were designed for live load and dead load deflections according to AISC methods and deflections were sometimes compensated for with a built in camber.

Relative Costs

The relative costs of the different floor system alternatives were calculated for a comparison by using *R.S. Means Assembly Cost Data, 32nd Annual Edition* and *R.S. Means Building Construction Cost Data, 66th Annual Edition*. The numbers calculated aren't an accurate idea of how much the actual floor system would cost to construct in State College, Pennsylvania. However, they are valid when used to make comparisons between the different types of construction. The existing system of composite steel deck on composite beams and girders was the most expensive overall, costing \$26.45 per square foot. The cheapest system was pre cast concrete on steel beams at \$14.53 per square foot; followed closely by the post tensioned concrete flat slab at \$15.78 per square foot. Because the post tensioned concrete flat slab system costs considerably less money than the concrete slab with drop panels it was the preferred alternative between the two.

Fire Resistance

The fire resistance of all of the systems met the minimum one hour requirement. However, only the cast in place concrete systems had all of their necessary fire protection built in. Additional fire protection would be required for the steel composite deck, beam, and girder construction and also the pre cast concrete on steel beam construction. This gives the cast in place concrete systems an edge.

Vibration|

The vibrations of all of the systems should be satisfactory. The concrete waffle slab stands out as the most rigid of all of the considered floor assemblies due to its large depth and high self weight. The vibration reducing effects of the post tensioning in the concrete slab should be investigated further and compared the vibration of the existing composite steel construction.

Final Recommendations (continued)

Moment Frame Integration

Looking ahead to Technical Assignment III, observations of how well a moment frame could be integrated into the proposed floor assembly were noted. The only system that would make it extremely hard to integrate lateral force resisting systems with the floor system would be the pre cast concrete plank. Due to their separate nature it may be impossible to use them efficiently as a floor system and lateral load distribution diaphragm. The composite steel construction and all three cast in place concrete constructions lend themselves to easily integrating lateral force resisting systems with the proposed floor systems.

Irregularities in Framing

The Life Sciences Building has a very irregular framing plan and the ability of the floor system to adapt to changing column lines, floor penetrations, and other conditions is very important. For this reason the highly regular pre cast hollowcore concrete plank and cast in place concrete waffle slab systems were removed from consideration. The ability of the existing composite steel construction and a post tensioned concrete flat plate to adjust warrants their further study.

Schedule / Construction Considerations

The Life Sciences Building did not have to meet a strict construction schedule and was designed using design – bid – build. Therefore, lead times for steel and pre cast concrete members were not big factors in the final recommendations for structural systems. Also, the fact that concrete should be poured in ideal conditions and needs to be shored for a period of time were not very heavily weighted in the decisions.

Lateral System Effects

Effects on the lateral force resisting system by changes in self weights would be negligible because my building is in a very low seismic activity region. Wind design is almost guaranteed to control over seismic loads no matter what the building dead load is. For this reason the effects of different floor systems on the lateral force resisting system were not considered – other than how easily moment frames could be integrated.

Conclusion|

In conclusion, I feel that of all the cast in place concrete systems, the post tensioned flat plate is the most desirable for a number of reasons. I also feel that the original designer of the structure chose composite steel deck, beams and girders as a result of experience and research and that it should remain a system for consideration. The pre cast system is cheap and light, but I feel that my building is too irregular to achieve the economies of pre cast plank. It is my recommendation to advance the post tensioned concrete flat plate and the composite steel deck, beam, and girder construction for further analysis.

Appendix A – Pre Cast Hollowcore Plank on Steel Beams

Appendix A – Pre Cast Hollowcore Plank on Steel Beams

THALL DAY
$$31' \times 31'$$

LOADS: DL = 10 + 20 + SELF WEIGHT
LL = BO
* REDUCELE

 $\rightarrow \underline{PESIGN} \xrightarrow{Pauxit}$
 $- \underline{PESIGN} \xrightarrow$

DEFLECTION

UMITS

DF

LE WITHW COUCRETE.

Life Sciences Building Prof. Andres Lepage

Appendix A – Pre Cast Hollowcore Plank on Steel Beams

> DESIGN SUPPORTING BEAMS
BRANG SPAN 31' (E-W) - TRY NON COMPOSITE STEEL BRANG PLANK SPAN 31' (N-S 1) - USE UNTOPPED PLANK (LESS D.L.)
-> TYPICAL WHERIDE BEAM!
$SPOD = 21'$ $A_T = 31' _{PT}$ $K_{LL}A_T = [2] 961) = 1922$
$DL = \begin{pmatrix} 10 + 20 + 68 \end{pmatrix} + 5W_{BCAN} = 3236 PLF$ 2UFed. FRETTOD PLANK 200 - 8/10T
$LL = 80 \rightarrow 80 \left(.25 + \frac{15}{\sqrt{(1922)}}\right) = 47.3719 \text{ PSF}(31)$
= 1468.5 P.F
1.2(323B) + 1.6(146B.5) = 6.235 K/FT
$M = \frac{6.235(31)^2}{12} = 7.49 \text{ k.PT} \qquad (TRY TO KEP IN WID-IB RAME)$ $M = \frac{6.235(31)^2}{12} = 7.49 \text{ k.PT} \qquad (TRY TO KEP IN WID-IB RAME)$
USE W B X 97 DL = 3135 PLA TL = 1.2(\$\$35) + 1.6(H68.5) =
$M = \frac{G(111 31)^2}{B} = 734 \text{ K} \text{ Fr}$
WIBX97 IS MOST ECONOMICAL SHAPE MEETING DEPTH LESS THEN WIB (DRIGHAL DESIGN)
TOTAL DEPTH = 10" + 10.6" = 20.6"
/ DEFLECTIONS;
(ASSUME PINNED - PINNED = WORST CASE)
$\Delta = \frac{5 w \ell^4}{384 EI} = \frac{5 (471) (1728) (31)^4}{384 (24000) I} = \frac{31 (12)}{240}$
I_ Z 2175.71 104
$\Delta = \frac{5[(.468)(1728)(31)^4}{384(23000)} = \frac{21[12]}{360}$

IL Z 1018.29 WY

384 (29000) I

Appendix A – Pre Cast Hollowcore Plank on Steel Beams

3'-101

갢

52"

4'-0" +0", 1/8"

This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions

of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths. The allowable loads shown in this table reflect a 1 Hour & 0 Minute fire resistance rating.

곊

7븅

2'

 $5\frac{3}{8}$

Appendix A – Pre Cast Hollowcore Plank on Steel Beams

Prestressed Concrete 10"x4'-0" Hollow Core Plank

1 Hour Fire Resistance Rating With 2" Topping

PHYSICAL PROPERTIES Composite Section A_c = 327 |n² Precast Sbc= 824 In.3 Ic = 5102 ln.4 Topping Stc = 1242 ln.3 Precast Stc = 1340 In³ Y_{bc} = 6.19 in. Wt = 272 PLF Y_{tc} = 3.81 ln. Wt = 68.00 PSF

5흫

7붛

7]"

18

15

DESIGN DATA

- 1. Precast Strength @ 28 days = 6000 PSI
- 2. Precast Strength @ release = 3500 PSI or 4000 PSI.
- 3. Precast Density = 150 PCF
- Strand = 1/2"Ø and 0.6"Ø 270K Lo-Relaxation.
- Strand Height = 1,75 n.
- Ultimate moment capacity (when fully developed)...
 - 7-1/2"Ø, 270K = 192,2 k-ft
 - 7-0.6"Ø. 270K = 256.4 k-ft
- 7. Maximum bottom tensile stress is 7.5√fc = 580 PSI 8. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- Flexural strength capacity is based on stress/strain strand relationships.
- 10. Deflection limits were not considered when determining allowable loads in this table.
- 11. Topping Strength @ 28 days = 3000 PSI. Topping Weight = 25 PSF.
- 12. These tables are based upon the topping having a uniform 2" thickness over the entire span. A lesser thickness might occur if camber is not taken into account during design, thus reducing the load capacity.

<u>0</u>

- Load values to the left of the solid line are controlled by ultimate shear strength.
- 14. Load values to the right are controlled by ultimate flexural strength or allowable service stresses.
- 15, Load values will be different for IBC 2000 & ACI 318-99, Load tables are available upon request,
- 16. Camber Is Inherent In all prestressed hollow core slabs and Is a function of the amount of eccentric prestressing force needed to carry the superimposed design loads along with a number of other variables. Because prediction of camber is based on empirical formulas it is at best an estimate, with the actual camber usually higher than calculated values.

SAFE S	AFE SUPERIMPOSED SERVICE LOADS IBC 2003 & ACI 318-02 (1.2 D + 1.6 L)												L)							
St	rand		SPAN (FEET)																	
Pa	ttern	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
7 - 1/2"ø	LOAD (PSF)	281	259	236	215	197	180	164	150	138	126	113	101	90	79		$^{\prime}$		\leq	
7 - 0.6"ø	LOAD (PSF)	>	<	256	244	233	223	214	205	195	182	170	159	148	134	122	111	110	91	81

2655 Molly Pitcher Hwy, South, Box N Chambersburg, PA 17201-0813 717-267-4505 Fax 717-267-4518

05/14/07

10F1.0T

3'-101

7붛

7분

52"

4'-0" +0",-1/8"

7흉

15

58

7¦*

18*

Appendix A – Pre Cast Hollowcore Plank on Steel Beams

Prestressed Concrete 10"x4'-0" Hollow Core Plank

1 Hour Fire Resistance Rating (Untopped)

PHYSICAL P Pre	ROPERTIES
$\begin{array}{l} A = 262 \text{ in.}^2 \\ I = 3196 \text{ in.}^4 \\ Y_{b} = 4.99 \text{ In.} \\ Y_{c} = 5.01 \text{ In.} \\ e = 3.24 \text{ in.} \end{array}$	S _b = 640 in. ³ S _t = 638 in. ³ Wt = 272 PLF Wt = 68.00 PSF

DESIGN DATA

- 1. Precast Strength @ 28 days = 6000 PSI
- 2. Precast Strength @ release = 3500 PSI or 4000 PSI. 5
- 3, Precast Density = 150 PCF
- 4. Strand = 1/2"Ø and 0.6"Ø 270K Lo-Relaxation.
- 5. Strand Height = 1,75 in.
- Ultimate moment capacity (when fully developed)... 7-1/2"Ø, 270K = 163.8 k-ft

- 7. Maximum bottom tensile stress is 7.5 yrc = 580 PSI
- 8. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- 9. Flexural strength capacity is based on stress/strain strand relationships.
- 10. Deflection limits were not considered when determining allowable loads in this table.
- 11. Load values to the left of the solid line are controlled by ultimate shear strength.
- 12. Load values to the right are controlled by ultimate flexural strength or allowable service stresses.
- 13, Load values will be different for IBC 2000 & ACI 318-99, Load tables are available upon request,
- 14. Camber Is Inherent In all prestressed hollow core slabs and Is a function of the amount of eccentric prestressing force needed to carry the superimposed design loads along with a number of other variables. Because prediction of camber Is based on empirical formulas it is at best an estimate, with the actual camber usually higher than calculated values.

SAFE S	SAFE SUPERIMPOSED SERVICE LOADS											200	3&	AC	318	3-02	(1,2	2 D ·	+ 1,6	3 L)
St		SPAN (FEET)																		
Pa	ittern	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
7 - 1/2"ø	LOAD (PSF)	202	188	175	161	148	136	125	116	106	98	90	83	76	70	64	59	53	>	<
7-0.6"ø	LOAD (PSF)	212	202	194	186	178	171	164	155	146	137	129	122	116	109	101	94	87	80	74

05/14/07

CINCRETE PRIDUCTS 2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17201-0813 717-267-4505 Fax 717-267-4518 This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request, individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow vidths. The allowable loads shown in this table reflect a 1 Hour & 0. Minute the resistance rating.

ies to the right are contr ies will be different for i s inherent in all prestres

10F1.0

Appendix B – Concrete Flat Slab with Drop Panels

Life Sciences Building Prof. Andres Lepage

Appendix B – Concrete Flat Slab with Drop Panels

 $B_{AA} = 31' \times 31'$ $f'_{L} = 4000 p_{AA}$ $f_{L} = 60000 p_{AA}$ $f_{L} = 60000 p_{AA}$ $f_{L} = 600 p_{AA}$ $f_{L} = 600 p_{AA}$ $f_{L} = 60000 p_{AA}$

DEFLECTIONS

(ASSUMED TO BE ALLEPTABLE USING <u>CRUE</u>) USING TL = ISO PEF $t_{MW} = 5"$ $t_{RED} = \frac{l_A}{33} = \frac{334}{33} = 10.12"$ $l_A = 31(l_A) - 36 =$ CRUE H = 10"

PESION SLAB

SPAN = 31' TL = 150 Per

t	38	× 35"	C	2400000		ARE	UNALLEPTABLE
1		TRY	FUET	SUAB	w	PROP	PANELS

Life Sciences Building Prof. Andres Lepage

Appendix B – Concrete Flat Slab with Drop Panels

BAY = SI' X 2I'
$$f'_{c} = 4000 \text{ Rev}$$
 $f_{y} = 60000 \text{ Rev}$
TL = TTB PSF \rightarrow USE 200 REF (LOUSERVANTURE)
 \downarrow USW6 CEST 2002 TD TRY FAT SLAR W DEDPS
 \uparrow W DERPS SHEAR IS NOT AS JUNFLAST
 \uparrow MORE EFFICIENT VER DE COLL. 3 STEEL.
 \downarrow DELETION:
USE ALT SIB-TES, \$4,5,3, T. 9.5(C)
 $\uparrow_{MN} = 4^{11}$ $\uparrow_{H} = \frac{f_{c}}{45} =$
 $g =$
 $g =$
 $g =$
 $R =$

Life Sciences Building Prof. Andres Lepage

Appendix B – Concrete Flat Slab with Drop Panels

00 psi Bars	125	anei	. C	/s.f.	2.79 3.04 3.04 4.04 4.04 4.55 4.56	281 348 348 446 446 446 482	288 323 508 508 508 508 508 508 508 508 508 508	3.02 3.45 3.45 3.94 5.48 4.33 5.48 5.48 5.48 5.48	3.22 3.70 4.16 4.57 5.15 5.27 5.27	3.26 3.78 4.74 4.98 5.91 5.61	
4,00 le 60		Steel (ps1 ation of P	II.	833 c.f.	2.77 3.04 3.89 4.01 4.30 4.43	2.81 3.45 3.45 3.45 4.46 4.42 4.42	283 339 339 501 501 501 501	228292928 229292929 21112 2122 2122 2122	3.20 3.20 5.16 5.16 5.16 5.16	3.24 3.75 4.68 4.91 5.54 5.54	ducted).
f ^c = Grac		Loc	1	ro	2.75 3.04 3.89 3.89 4.25 4.25	2.82 3.40 3.41 4.12 4.72 4.72	281 3.86 3.86 4.49 4.23 4.49 4.83 4.83 4.83 4.83 4.83 4.83 4.83 4.83	2282 828 828 828 828 828 828 828 828 82	3.18 3.68 5.00 5.00 5.00 5.05	3.21 3.71 4.63 5.13 5.13 5.13	been de
E		a Ship	Bottom		10-45 10-45 10-45 10-45 10-45	$\begin{array}{c} 10 - \varphi 5 \\ 11 - \varphi 5 \end{array}$	10-#5 10-#5 10-#5 11-#5 11-#5 11-#5 12-#5	11-#5 11-#5 11-#5 11-#5 12-#5 13-#5 13-#5	11-#5 11-#5 12-#5 13-#5 13-#5	11-#5 11-#5 12-#5 13-#5 14-#5 14-#5	load has
PAN	ing Bars	Middl	fop	AB	10-45 10-45 11-45 11-45 11-45 11-45 12-45 12-455	10-0.5 10-0.5 11-0.5 11-0.5 12-0.5 9-0.6 9-0.6	10-#5 10-#5 11-#5 12-#5 13-#5 13-#5 10-#6	11-#5 11-#5 12-#5 13-#5 10-#6 11-#6 11-#6	11-45 11-45 13-45 10-46 11-46 11-46 11-46	11+#5 14-#5 14-#5 11-#6 11-#6 11-#6 11-#6	ed dead
ERIOF	Reinfurc	n Strip	Bottom	OF SL	10-45 11-45 11-45 11-46 11-46 11-46	10-95 11-95 9-96 10-96 11-96 10-96 9-97 9-97	10-#5 12-#5 11-#6 11-#6 16-#5 12-#6 10-#7	11-#5 13-#5 11-#6 10-#7 10-#7 10-#7	13-#5 11-#6 10-#7 10-#7 14-#6 20-#5	14-#5 16-#5 13-#6 14-#6 20-#5 11-#7 12-#7	d (factor
E INTE		Colum	Top	KNESS	14-4 5 13-4 7 14-4 7 13-4 8 13-4 8 15-4 8 15-4 8	$\begin{array}{c} 12^{-\varphi} \\ 12^{-\varphi} \\ 14^{-\varphi} \\ 14^{-\varphi} \\ 16^{-\varphi} \\ 16^{-\varphi} \\ 17^{-\varphi} \\ 3 \end{array}$	13-# 7 15-# 7 15-# 8 15-# 8 15-# 8 16-# 8 18-# 8 18-# 8	14-47 13-48 15-48 17-48 18-48 18-48 18-48 19-48	16-47 115-48 115-48 119-48 20-48 20-48 20-48	17.47 16.48 18.48 19.48 20.48 20.48 221.48 221.48	toned loe
UARI	(1)	- 	(m)	AL THIC	≭©8883\$\$	2282848	C8854384	28788332 287	21 22 23 23 23 23 23 24 24 25 25 25 26 26 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	87455933323	osed fac
S	(E)	- and	(psi	= TOT/	50 250 360 350 350	89988898	88888888	399555998 38955599	89338888	300 550 550 56 300 550 56 50 50	Superimp
	(2)	Span	(E)	10 in.	*****	2222222	******	ଝଟ୍ଟଟ୍ଟ୍ ଅଟ୍ଟ୍ ଅଟ୍ଟ୍ ଅଟ୍ଟ୍ ଅଟ୍ଟ୍ ଅଟ୍ଟ୍ ଅଟ୍ଟ୍ ଅଟ୍ଟ୍ର ଅଟ୍ଟ୍ର ଅଟ୍ଟ୍ର ଅଟ୍ଟ୍ର ଅଟ୍ଟ୍ର ଅଟ୍ଟ୍ର ଅଟ୍ଟ୍ର ଅଟ୍ଟ୍ର ଅଟ୍ଟ୍ର ଅଟ୍ଟ୍ ଅଟ୍ଟ୍ର ଅଟ୍ର୍ର ଅଟ୍ର୍ରର ଅଟ୍ରର ଅର୍ଡ୍ରର ଅଟ୍ରର ଅଟ୍ରର ଅର୍ଟ୍ରର ଅଟ୍ରର ଅର୍ରର ଅର୍ରର ଅର୍ରର ଅର୍ରର ଅଟ୍ରର ଅର୍କ୍ରର ଅର୍କ୍ରର ଅଟ୍ରର ଅର୍କ୍ରର ଅଟ୍ରର ଅର୍କ୍ରର ଅଟ୍ରର ଅର୍କ୍ରର ଅର୍ରର ଅର୍କ୍ରର ଅର୍ରର ଅର୍ର	******	******	(2)
		anel	C	£/8.f.	2.74 2.96 3.42 3.83 3.83 4.71 4.71 4.71	274 3.00 4.00 5.00 6.00 6.00 6.00 6.00 6.00 6.00 6	236 3394 5450 546 546 546 546	3.07 3.07 5.11 5.50 5.88 5.88	3.26 3.36 3.41 4.45 5.77 6.00	3.46 4.15 5.14 5.62 5.88 5.88 5.88 5.88 5.88 5.88 5.88	1
	End Panel	Steel (pst) ation of P	EC	0.833 c	274 298 337 4.14 4.62 4.62 4.62	280 354 4.67 5.18 5.18	288 381 426 535 535 535 535 535 535	3.05 3.53 3.53 3.53 3.53 3.53 3.53 3.53	3.23 3.78 5.26 5.20 5.68	3.33 3.37 4.58 4.59 5.58 5.58 5.58 5.58	= 42
ANEL		Loca	E		272 296 333 373 4.11 4.11 4.72	280 350 441 513 513 513	288 333 449 525 525 525	3.03 3.49 5.23 5.23 5.23 5.23	321 3.77 5.74 5.74 5.74 5.74	- 328 332 559 559 559	imns; /
DGE	144	ch s Ship	lint.		10-#5 10-#5 10-#5 11-#5 11-#5 9-#6 9-#6	10-#5 10-#5 10-#5 12-#5 9-#6 13-#5 10-#6	10.45 10.45 11.45 10.46 10.46 10.46	11.45 11.45 13.45 10.46 11.46 11.46 11.46	11-#5 12-#5 10-#6 11-#6 11-#6 12-#6 12-#6	11+5 11+5 11+5 11+6 12+6 13+6 13+6	er of coli.
ARE E	2	Middle	Battom		10+5 10+5 11+5 12+5 11+6 11+6 11+6	10-45 11-45 12-45 10-46 11-46 11-46 9-47	10.45 12.45 11.46 11.46 16.45 12.46 10.47	1145 1345 1645 1645 1047 1047	1246 1046 1645 1047 1047 1047 2045	13.45 13.45 13.46 13.46 13.46 13.46 15.46 12.47	r-to-cent
nòs	orcing Ba	- Alexandre	Int.		15-46 13-47 13-48 13-48 13-48 15-48 16-48	12-#7 12-#8 13-#8 15-#8 16-#8 17-#8 18-#8	14.47 15.48 15.48 16.48 19.48 19.48 20.48 20.48	15.47 16.48 16.48 16.48 19.48 20.48 20.48 20.48 20.48 20.48	17-#7 15-#8 19-#8 19-#8 21-#8 22-#8 23-#8	14-68 17-68 19-68 21-68 22-68 22-68 22-68 22-68 22-68 23-68	(2) Cente
	Reint	Each: Limn Strip	Bottom		12-#5 9-#7 9-#7 10-#7 20-#5 9-#8 10-#8	10-#6 16-#5 10-#7 11-#7 10-#8 9-#9	1146 1047 1247 1247 1048 1148 1148	12#6 14#6 12#7 10#8 10#8 10#9 10#9	10.47 12.47 10.48 10.49 10.49 13.48	14.46 13.47 11.48 12.48 12.48 11.49	
		C.01	t + Dd +		(245 4 (245 4 (245 4 (645 5 (346 2 (346 2 (346 3 (346 3	12455 13455 15456 15464 19453 14463 14463 16462	03±554 05±555 03±555 03±55555 03±55555 03±55555 03±55555 03±55555 03±55555 03±55555 03±55555 03±55555 03±555555 03±555555 03±555555 03±555555 03±5555555 03±5555555 03±555555555 03±555555555 03±5555555555	1445 7 1346 4 1346 4 1346 2 1346 2 11	15-45 日 16-45 日 16-45 日 17-46 6 4 17-46 6 4 18-46 0 4 19-46 0 1 18-46 0 1	7-#57 44#66 6-#655 7-#64 8-#63 9-#63	
	memts	-M 1st. int.	(ft-kip)		309 367 517 517 553 563 563	345 521 528 568 528 568 528 568 528 568 528 568 528 568 568 568 568 568 568 568 568 568 56	381 516 678 678 678	224 266 267 266 266 266 266 266 266 266 266	24 55 55 55 56 56 56 56 56 56 56 56 56 56	8851282 8851288	1
	anel Mo		(ft-kip)	8	822889444	256 346 387 387 387 387 387 387 387 387 387 385 385 385 385 385 385 385 385 385 385	283 283 283 283 283 283 283 283 283 283	312 369 421 541 541	343 502 579 579	878 800 873 873 873 873 873 873 873 873 873 873	plata.
EM (SDS)	Total P.	N ti	(dist-tit)	DF SLAI	205 205 205 205 205 205 205 205 205 205	151 173 234 233 234 233 234 235 235 235 235 235 235 235 235 235 235	142 192 241 241 252 230 252 241	156 230 233 261 261 261 261 261	280 281 233 233 233 233 233 233 233 233 233 23	300 23 23 23 48 300 23 23 23 23 23 23 23 23 23 23 23 23 23	d below
SYST		um	Yr	NESS C	0.762 0.724 0.635 0.617 0.612 0.610 0.610	0.741 0.708 0.675 0.675 0.675 0.675 0.675 0.670 0.610	0.706 0.722 0.665 0.665 0.669 0.609 0.609 0.609	0.730 0.685 0.685 0.644 0.619 0.609 0.609 0.608 0.608	0.699 0.692 0.642 0.616 0.607 0.607	0.707 0.705 0.6555 0.609 0.609 0.607 0.606	ibove an
SHEA	292 2010 2010 2010 2010	Min.5 Coli	(in)	THICK	8288844	8828348	8874488	8284828	2884988F	38555533	8 Same 6
T PL/	Factored	posed Load	(psd)	= TOTAL	50 250 350 350 350 350 350 350 350 350 350 3	8022022020 802202020 800000000000000000	89358888	8838888	22222222222222222222222222222222222222	392505285	1) Column
FLA	SPAN	Cols. $\ell_1 \equiv \ell_2$	(H)	10 in.	******		88888888	*****	*****	*****	

9-30

Life Sciences Building Prof. Andres Lepage

Appendix B – Concrete Flat Slab with Drop Panels

		Concrete	Vag. ft/	ANELS	0.931 0.931 0.944 0.958 0.958	0.995	0.958	0.944 0.944 0.958 0.995 0.995	0.944 0.958 0.958 0.996	0.958 0.958 0.958	0.958 0.958 0.958 0.9966	
щ	('M	Total	(pst)	NOP P	229 2.67 3.39 3.82 4.41	5.19	2.40 3.40 4.24 4.24	2.48 3.07 3.75 4.51 5.25	2.52 3.13 4.01 4.95	2.57 3.43 4.48 5.16	2.77 3.60 4.68 5.65	
RAN S ⁽²⁾	RS (E.	Strip	Bottom	WEEN D	10.45 10.45 11.45 13.45 15.45	18-#5	10-45 12-45 15-45 9-47	11-45 11-45 10-46 12-46 10-47	11-#5 12-#5 15-#5 18-#5	11-#5 10-#6 12-#6 20-#5	12-45 15-45 19-45 12-47	
Panel	NG BA	Middle	Top	TH BET	10-45 10-45 9-46 15-45 10-47	11-#7	10#5 12#5 9#7 14#8	11-#5 13-#5 16-#5 10-#7 12-#7	11	12-#5 16-#5 14-#6 10-#8	14.#5 13.#6 12.#7 11.#8	qu
INTE Drop No Be	FORCI	i Strip	Bottom	LAB DEF	10-45 13-45 9-47 14-46 12-47	11-08	12-#5 15:#5 13:#6 9:#8 9:#8	13.#5 12.46 21.45 18.46 12.48	14-45 19-45 17-46 12-48	16#5 21#5 11#8 10#9	18#5 23#5 21#8 11#9	d bekw s
UARE	REIN	Column	Top	OTAL SI	14世 18世 15世 12世 28世	12-#3	16-#5 15-#6 18-#6 12-#8	16-#5 15-#6 13-#7 15-#7 13-#8	1845 1546 2645 1348	18445 17-445 1647 14-48	20-#5 26-#5 17-#7 16-#8	above an
sQI	(2)	Square	Size (in.)	5 in. = T	23 23 25 23 25 25	58	12 22 23 26	12 22 24 27	24 24 24	28 23 43	5 B 2 8	umn size
	Factored	Superm-	(bel)	h = 10.	100 200 400 500	009	200 300 500	100 200 300 400 500	100 200 300 400	100 200 300 400	100 200 300 400	Same col
	ŝ	H.	(H-k)		408.1 533.6 658.8 783.9 906.1	1022.5	458.5 599.3 740.1 882.8 1010.7	514.2 671.1 829.4 983.1 1119.4	572.8 747.6 922.7 1091.1	637.6 830.7 1016.6 1196.7	705.1 914.3 1120.0 1302.9	nels. (3)
	OMENT	Bot.	(j+) (j+)		303.2 396.4 489.4 582.3 673.1	772.7	340.6 445.2 549.8 665.8 750.8	382.0 498.5 616.1 730.3 831.6	425.5 555.4 685.5 810.5	473.6 617.1 755.2 888.3	523.8 679.2 832.0 967.9	redge pa
Panels	MIC	Edge	€¥)		151.6 198.2 244.7 291.2 336.6	379.8	170.3 222.6 327.9 375.4	191.0 249.3 308.1 365.1 415.8	212.8 277.7 342.7 405.3	236.8 306.5 377.6 444.1	261.9 339.6 416.0 483.9	size as for
Drop		Total	(pat)	ŝ	246 3.06 3.83 4.39 5.17 5.17	6.00	2.66 3.25 4.88 4.88 5.70	2.74 3.50 4.32 5.20 5.95	2.88 3.67 4.75 5.68	3.00 3.99 5.07 5.96	3.29 4.29 5.38 6.43	is same :
/STEI With	(E. W.)	s Strip	<u>11 0</u>	PANEL	10-45 11-45 10-46 9-47 10-47	9#8	10-45 946 11-46 10-47 15-46	11-45 10-46 17-45 11-47 10-48	12 13 13 13 13 13 13 13	13-45 17-45 15-46 18-48	15.#5 19.#5 13.#7 12.#8	pane
AB S' L Beams	BARS	Middle	Bottom	EN DRO	10 13 13 13 15 15 15 15 12 17	8#-6	1245 1545 1047 949 949	13.45 12.46 11.47 10.48 12.48	10-#6 10-#7 10-#8 12-#8	18-#5 11-#7 18-#6 10-#9	13-46 12-47 12-48 11-49	trip. (2)
T SL/ PANE No	RCING	9	<u>8 E</u>	BETWE	15.45 14.46 12.47 13.47 12.48	13-48	12-45 20-45 12-47 12-48 13-48	18-45 16-45 16-45 16-45 16-45 16-45	25 8 4 5 5 4 4 4 8 4 4 4 8	14 ±5 18 ±5 17 ±7 15 ±5	16#5 15#7 14#8 14#8	column
FLA	EINFO	umn Strip	Bottom	DEPTH	15#5 11#7 18#6 16#7 12#9	17.48	947 1247 1547 1448 1349	1945 1846 1348 1348 1348	22.45 15.47 12.49 14.49	17.46 13.48 13.49 16.49	11-#8 12-#9 18-#8 17-#9	le third of
DUARE	E	Col	+ Edd	TAL SLAB	12-45 2 12-45 2 12-45 2 12-45 2	16#5 3	12-45 3 12-45 1 14-45 2 14-45 3 16-45 3	13-85 2 13-85 4 15-85 4 17-85 2 17-85 2	13-35 3 13-35 3 14-35 5 17-35 3	14-北5 1 14-北5 4 16-北5 3 18-北5 5 18-北5 5	14#5 5 14#5 5 17#5 6 14#6 4	in the midd
S		Column	Υf	n. = TOT	0.760 0.798 0.679 0.632 0.632	0.701	0.797 0.651 0.634 0.741 0.694	0.750 0.767 0.745 0.745 0.722 0.644	0.787 0.702 0.763 0.702	0.722 0.763 0.691 0.700	0.777 0.748 0.731 0.731	e placed
		Square	Size (in.)	= 10.5 i	23 9 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8	24 8 8 8 X	88299	C2 25 65 52	38 53 1 9	34 12 34 12	ars may t
		e Urop	(iii)	4	8.67 8.67 8.67 8.67 10.40	10.40	9.00 9.00 9.00 9.00 10.80	9.33 9.33 9.33 11.20 11.20	9.67 9.67 9.67 11.60	10.00 10.00 12.00	10.33 10.33 10.33 12.40	of these b
000 p 0 Bar		uenbo	Cepth (in.)		6.00 7.50 9.00 9.00	6.00	6.00 9.00 9.00	007 0016 0016 0016	7.50 9.00 9.00	006 006	006 006 006	percent c
= 4,1 ade 6	Factored	Superim-	Deol (led)		100 200 400 500	600	200 200 500 500	100 200 500 500 500	400 300 400	400 3000 400	100 200 400	3: (1) 20
f, Gre	日本の日本の	SPAN C.C.	ℓ1= ₽2 (fft)		****	8	22222	383333	33 33 33	8888	****	NOTE

Life Sciences Building Prof. Andres Lepage

Appendix B – Concrete Flat Slab with Drop Panels

		Concrete	\sq. ft/	NELS	0.981 0.981 1.000 1.019 1.019	0.981 1.000 1.000 1.063 1.063	1.000 1.000 1.019 1.063 1.063	1.000 1.019 1.019 1.063 1.063	1.000 1.019 1.019 1.019	1.019 1.019 1.019 1.019	
Ē	('M	Total	(Jsd)	ROP PA	253 258 351 423 4.91	2.84 3.08 5.28 5.28	2.63 3.30 4.04 5.75	2.69 3.46 5.35 5.35 5.19	2.93 3.70 5.81	3.07 4.06 5.30 6.08	1.12
S ⁽²⁾	RS (E,	Strip	Bottom	WEEN D	11#5 11#5 13#5 13#5 18#5	12-#5 12-#5 16-#5 20-#5	12-45 13-45 16-45 14-46 12-47	12-#5 16-#5 18-#5 12-#7 13-#7	13-45 16-45 20-45 13-47	14-45 18-45 12-47 11-48	
Panel	NG BA	Middle	dop	TH BETV	11 15 15 15 15 11 11 11 11 11 11	12 兆5 10 兆8 12 兆8 12 兆8 10 北8	12-#5 11-#5 10-#7 12-#7 11-#8	13-#5 13-#5 15-#6 18-#6 12-#8	15-#5 19-#5 13-#7 12-#8	信括 11 11 11 11 11 11 11 11 11 11 11 11 11	
Drop No Be	FORCI	Strip	Bottom	AB DEP	13-#5 16-#5 114-#6 12-#6	14-45 18-45 12-47 11-48 10-49	11-#6 20-#5 10-#8 10-#8 14-#8	1745 22-45 1547 1148 1349	19-#5 13-#7 22-#6 12-#9	11-47 11-48 11-49 13-49	
With	REIN	Column	Top	DTAL SL	17.45 15.45 23.45 13.47 15.47	13.45 15.45 15.47 13.45 13.45	18.45 17.45 28.45 22.45 15.45 15.45	2045 17-45 15-47 16-48 16-48	16-85 28-85 17-45 16-85	16#6 15#7 15#8 17#8	
5	×	Square	Size (in.)	in. = TG	282322	25 23 23 23 23 23 23 23 23 23 23 23 23 23	38834	3825347	8834	28 28 28 28	8.9
	Factored	pused posed	(bst)	h = 11	2000 000 2000 000 2000 000	2000 000 2000 000 2000 000	200 200 200 200 200 200 200 200 200 200	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6888 8	000 000 000 000 000	
	S	Ë	(HK)		529.4 683.6 844.3 1002.8 1159.1	589.7 764.5 942.2 1121.1 1290.8	656.9 849.4 1046.4 1247.2 1423.4	726.5 942.8 1159.2 1370.1 1555.5	800.8 1040.4 1276.2 1500.9	883.4 1144.4 1393.1 1626.1	
	DMENT	Bot.	(#-k)		393.2 507.8 627.2 744.9 861.0	438.0 567.9 699.9 832.8 958.9	488.0 631.0 777.3 926.5 1057.4	539.7 700.4 861.1 1017.8 1155.5	584.9 772.9 948.0 1115.0	656.2 850.1 1034.9 1207.9	
Panels	M	Edge	E)		196.6 253.9 313.6 372.5 430.5	219.0 283.9 350.0 416.4 479.4	244.0 315.5 388.7 463.2 528.7	209.8 350.2 430.5 508.9 577.8	297.4 388.4 474.0 667.5	328.1 425.1 517.4 604.0	
Drop		Total	(bel)	0	2.77 3.42 4.07 5.76	2.94 3.64 5.28 17 8.17 8.17	3.03 3.81 5.72 6.64 6.64	3.20 5.21 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23	864 867 867 867 867 867 867 867 867 867 867	3.61 4.68 6.04 7.02	
With U	(E. W.)	Strip	8 të	PANEL	11-#5 10-#6 12-#6 14-#6 10-#8	12.45 15.45 10.47 12.47 11.48	13.45 12.46 11.47 18.46 12.48	14-#5 18-#5 13-#7 13-#8 13-#8	11-46 11-47 18-46 18-46	13.46 12.47 12.48 11.49	
L Beams	BARS	Middle	Bottom	N DROP	13-#5 16-#5 14-#6 10-#8 12-#8	10-#6 10-#7 12-#7 13-#8 13-#8	11-#6 20-#5 10-#8 10-#9 14-#8	12#6 12#7 12#8 12#8 13#9	19-#5 13-#5 16-#7 12-#9	11.47 11.48 11.48 13.49	
PANE	RCING	E	<u>8</u> jij	BETWEE	18-#5 23-#5 18-#6 27-#5 13-#8	14-46 23-45 15-47 16-47 14-48	14-46 18-46 15-47 15-47 16-48	16-#6 18-#6 17-#7 15-#8 14-#9	17-46 15-47 18-47 17-48	17.46 22.46 16.48 18.48	
EDGE	EINFO	umn Strip	Bottom	ОЕРТН Е	19年5 10世8 16世7 12世8 14世8	11. 15. 15. 15. 15. 15. 15. 15. 15. 15.	17 16 15 13 8 13 8 8 8 8 8 8 8 8 8 8 8	11-#8 14-#8 14-#8 17-#9 20-#9	15 <i>世</i> 20 <i>世</i> 16 <i>世</i> 23 <i>曲</i>	13 世 17 地 21 地 21 地	
UARE	B	Col	Ext, +	L SLAB	1345 2 1345 4 1345 1 1445 1 1645 3	13-45 3 13-45 3 14-45 5 15-45 4 17-45 4	1445 1 1445 4 1445 4 1745 4 1945 5	14-#5 3 16-#5 2 18-#5 6 15-#6 4	15,45 5 15,45 3 17,45 6 20,45 4	15#5 4 15#5 5 19#5 5 22#5 5	
sç	1000 00 00 00 00 00 00 00 00 00 00 00 00	Column	75	= TOTA	0.761 0.777 0.643 0.654 0.654	797.0 0.688 0.775 0.698 0.77.0 0.47.0	0.710 0.751 0.763 0.747 0.747	0.767 0.639 0.639 0.739 0.739	0.811 0.688 0.756 0.694	0.753 0.765 0.721 0.689	
	13	Square I	(in.)	= 11 in.	12 20 22 23 23	23 23 23 23 23 23 24 25 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	28 24 46 25 26 24 46 25	12 24 29 29 29	12 20 27	12 23 30	
00 00	- Contraction	don a	(II)	-	9.33 9.33 9.33 9.33 11.20	9.67 9.67 9.67 11.60 11.60	10.00 12.00 12.00	10.33 10.33 12.40 12.40	10.67 10.67 10.67 12.80	11.00 11.00 13.20	
0 Ban	Carlose	Par duan	(in.)		700 1100 1100	7,00 9,000 11,000 11,000	900 900 11.00 11.00 11.00	900 001 000 001 000 001 001 001 001 001	9.00 11.00 11.00	11.00 11.00 11.00	
= 4,(ade 6(Factored	posed	(jsd)		100 200 500 500	200 200 500 500	100 200 400 500	100 2000 400 500	200 200 400	100 200 400	
Gre		SPAN 6-0	(II) 5		32 23 23 28 29	ଅଷଷ	88888	*****	****	2222	

Life Sciences Building Prof. Andres Lepage

Appendix B – Concrete Flat Slab with Drop Panels

		U.U.	1. ft./	SI	023 042 060 105	080 080 080 080 080 080 080 080 080 080	1050042	080 080 105 105 105 105 105 105 105 105 105 10	100000	060	
1.1		30	180	PANE	22222	33535	22222	22225	5555	5555	
IEL	('M	Total	(psd)	DROP	2.66 3.08 5.10 5.10	2.67 3.31 5.67 5.67	2.78 3.56 5.12 5.12 5.02	2.82	3.97 5.43 5.91	3.25 5.40 6.20 6.20	1226 21 3
RAI	ARS (E.	e Strip	Bottom	IWEEN	12-#5 12-#5 10-#6 12-#6 12-#6	13.45 13.45 16.45 10.47 12.47	13.45 14.45 18.45 11.47 13.47	13-45 11-46 19-45 13-47 11-48	14-45 17-45 15-46 18-46	15.45 19.45 13.47 12.48	
ERIOF p Pane eams	ING B/	Middle	Top	PTH BE	12 #5 10 #6 12 #6 14 #6 12 #7	13#5 15#5 10#7 12#7 18#6	13#5 12#6 11#7 13#7 12#8	14#5 13#6 12#7 11#8 16#7	11-#6 20-#5 13-#7 12-#8	17-45 12-45 12-48 13-48	-e
th Drop	IFORC	n Strip	Bottom	LAB DE	14.#5 18.#5 12.#7 12.#8 12.#8	15#5 15#5 17#6 17#6 17#8 15#7	12#8 12#7 11#8 13#8 12#9	17-指 17-指 12-指 13-指 13-指	11-#7 11-#8 11-#8 13-#8	12-#7 21-指 19-#7 14-#9	below sh
UARE	REIN	Colum	Top	FOTAL S	13-#6 15-#6 26-#5 15-#7 13-#8	18.45 17.46 26.45 16.47 15.48	20.#5 28.#5 15.#7 14.#8 16.#8	16.46 26.45 17.47 15.48 15.48	16.46 15.47 15.48 15.48	18,46 22,46 16,48 18,48	and anot
SQ	(2)	Column	Size (n.)	5 in. = 1	282342	322342	883342	382345	54 52 52 25	32 42	e ezis um
	Factored	pesod	(jscl)	h = 11.	100 200 400 500	100 200 500 500	100 200 500 500	100 200 500 500	400 50 40 300 40	400 200 200 200	ulto ame
	IS	별	(f=). (fi=k)		607.1 781.3 965.8 1132.4 1306.9	676.2 968.1 1064.8 1259.6 1445.6	747.8 961.1 1179.5 1394.2 1584.3	824.3 1063.2 1302.3 1527.1 1721.6	909.3 1169.5 1421.5 1659.0	996.4 1275.9 1551.9 1798.2	els. (3) S
	OMEN'	Bot	(JHK)		451.0 580.4 710.0 841.2 970.8	502.3 644.9 791.0 905.7 1073.9	566.5 713.9 876.2 1036.7 1176.9	612.4 789.8 967.4 1134.4 1278.9	675.5 868.8 1066.0 1232.4	740.2 947.8 1152.8 1335.8	edge pan
Panels	M	Edge	(j)-1		225.5 290.2 355.0 420.6 485.4	251.2 322.4 467.8 536.9	277.8 357.0 438.1 517.8 588.5	306.2 394.9 483.7 687.2 639.5	337.7 434.4 528.0 616.2	370.1 473.9 576.4 667.9	28 as for
M Drop		Total	(jsd)	S	2.94 3.61 5.11 5.87	2.99 3.79 4.61 6.55 6.55	3.16 4.17 5.01 5.89 6.92	336 431 530 649 731	3.48 5.84 5.84 6.83	3.77 4.84 6.19 7.18	s same s
/STEI With	(E. W.)	a Strip	lit ob	P PANEL	12-45 15-45 10-47 10-48	13.45 16.45 20.45 20.45 10.48 10.48	13-45 13-45 12-47 11-48 11-48 16-47	11-46 14-46 13-47 13-47 13-48 11-49	12-46 12-47 11-48 13-48	19-45 13-47 12-48 12-48	op panel
AB S' L Beam	BARS	(ppil)	Bottom	OHD NO	10#6 10#7 12#7 18#6 12#8	15.45 14.46 10.48 12.48 11.49	1246 1247 1148 1348 1249	13#6 13#7 12#8 12#8 13#9	20-#5 11-#8 13-#8 13-#8	12-#7 12-推 12-推 14-描	i. (3)
T SL/ PANE No	RCING		히비	BETWEI	14-46 16-48 15-47 16-47 14-48	14-#6 18-#7 15-#7 14-#8 16-#8	16-#6 15-#7 22-#6 15-#8 14-#9	15-46 15-47 18-47 18-47 15-49	17-46 16-47 15-48 15-48 18-48	26.45 18.47 17.48 16.49	column str
FLA	EINFO	umn Strip	Battom	DEPTH	11.48 11.48 13.49 15.49	12,47 12,48 12,49 18,49 17,49	18#6 11#9 17#8 16#9 16#9 19#9	15#7 12#9 15#9 18#9 21#9 21#9	22.46 17.48 17.49 20.49 20.49	14#8 18#8 18#9 21#9 21#9	a third of c
DUARE	8	Col	Ect. +	AL SLAB	13-45 3 13-45 3 14-45 4 16-46 3 17-45 3	14-45 1 14-45 3 14-45 3 14-45 3 17-45 3 19-45 6	14-45 5 14-45 5 16-45 3 16-45 3 18-45 6 15-46 4	15-45 5 15-45 2 17-45 7 20-45 5 16-46 3	15-45 2 15-45 5 19-45 5 22-45 6	16-#5 4 17-#5 6 20-#5 8 17-#6 3	The middle
S	(6)	Column	χ_f	1. = TOI	0.786 0.673 0.717 0.717 0.640 0.640	0.696 0.721 0.636 0.698 0.698	0.740 0.777 0.678 0.678 0.748 0.746	0.803 0.651 0.781 0.781 0.781 0.692	0.710 0.754 0.734 0.711	0.762 0.752 0.757 0.689	e place in
		Square	(iu)	= 11.5 lr	219923	21 12 13 23 13 13 13 13 13 13 13 13 13 13 13 13 13	15 23 28 28	12 16 31 31 31	16 22 29	12 18 24 31	p b b b b b b b b b b b b b b b b b b b
	Dmn	nel	(III)	ч.	9.67 9.67 9.67 9.67 11.60	10.00 10.000	10.33 10.33 12.40 12.40	10.67 10.67 12.80 12.80	11.00 13.20	11.33 11.33 11.33 13.60	these bs
0 Bar	Snicre	Pa	Gebu		7,00 9,00 11,00	9,00 11,00 11,00	9.00 9.00 11.00 11.00	9.00 11.00 11.00 11.00	11.00	11.00 11.00 11.00	percent o
= 4,(ade 6(Factored	pesod	(pst)		100 200 400 500	100 200 400 500	100 200 400 500	200 200 500 500 500	400 200 400	200 200 200 400	(1) 20
f, Gra	COAN	2-0	E E		88888	****	****	*****	****	ನನನನ	NOTES

Appendix B – Concrete Flat Slab with Drop Panels

Notes:

1. Top bars must be concentrated within width of the column plus 1.5h on each side of the column (ACI 13.5.3.2 and 13.5.3.4).

 Integrity reinforcement is required (ACI 13.3.8.5). All bottom bars in the column strip must be continuous or spliced over the support with Class A tension lap splices. At least two of the column strip bottom bars in each direction must pass within the column core and be anchored at exterior supports.

Figure 9-2 Typical Bar Length Details

9-2

CONCRETE REINFORCING STEEL INSTITUTE

NOTE: Integrity reinforcement is required (ACI 13.3.8.5). All bottom bars in the column strip must be continuous or spliced over the support with Class A tension lap splices. At least two of the column strip bottom bars in each direction must pass within the column core and be anchored at exterior supports.

10-1

HOT TRACINED C. CARE I THE BAN = 31' x 31'
DETENTIVE LARGE I SUME TRUMETED FOR DEPUTITIONS:
2-WAY POST TRUBBIONED
$$\frac{3112}{1} = 473$$

 $\frac{1}{1} = 60000$ Rev
 $1 = 30$ Ref 200 58.000 PC $\frac{1}{1} = 60000$ Rev
 $1 = 30$ Ref 200 58.000 PC $\frac{1}{1} = 4000$ Rev
 $1 = 30$ Ref 200 58.000 PC $\frac{1}{1} = 10 + 20$ REF = 30 REF
 $1 = 30$ Ref 200 58.000 PC $\frac{1}{1} = 12(30) + 1.6(58.1) = 12(192)$ Ref
 $\frac{1}{12} = 03.1$ Ref 300 Ref = 01 avas $(8')$ $\frac{1}{12} = \frac{80}{130} = .61 \times .75'$
 $\frac{1}{12} = 312.18$ $\frac{1}{16} = 2416$ W²
 $5 = \frac{372.18^{3}}{6} = 3460$ W²
ALE PROPERTIE:
 $A = 372.18^{3} = 3460$ W²
ALEQUARDUST STREES:
 $(ACZ 18.4.1)$ TWE OF TRACKUSKI
 $f_{12}' = 3000$ Re1
BTREME PROPECTIE:
 $(ACZ 18.4.1)$ TWE OF TRACKUSKI
 $f_{12}' = 3000$ Re1
BTREME PROPECTIE:
 $(ACZ 18.4.1)$ TWE OF TRACKUSKI
 $f_{12}' = 3000$ Re1
BTREME PROPECTIE:
 $(ACZ 18.4.1)$ TWE OF TRACKUSKI
 $f_{12}' = 3000$ Re1
BTREME PROPECTIE:
 $(ACZ 18.4.1)$ TWE OF TRACKUSKI
 $f_{12}' = 3000$ Re1
BTREME PROPECTIE:
 $(ACZ 18.4.1)$ TWE OF TRACKUSKI
 $f_{12}' = 4000$ As
ETTERME REFECTIONS. $= 37200$ $= 1600$ PS1
DTREME REFECTIONS. $= (0.1700) = 379.5$ PS1
DTREME REFECTIONS. $= (0.1700) = 379.5$ PS1
DTREME REFECTIONS. $= (0.1700) = 379.5$ PS1
DTREME PROPECTIONS LUMITS:
 $P|_{A} = 125$ PS1 MIN $= 300$ RE1 MIX

CONER REPORTANCE (FIRE):

$$J_{1}^{H}$$
 COVER
TENDON PROFILE:
 J_{1}^{H} COVER
TENDON LOCATION (PROM OLE CONTON)
ENTERIOR SUPPORT H_{1}^{H} $A_{UT} = (e^{H})$
MIDSPAN H^{H} $A_{UT} = (e^{H})$
 $A_{UT} = (100)(175)(21) = 2.325 \text{ KLF}$
 $H_{S} = (100)(175)(21)^{2} = 0.325 \text{ KLF}$
 $P = (2325)(21)^{2} = 0.325 \text{ KLF}$
 $P = (2325)(21)^{2} = 0.325 \text{ KLF}$
 $h = \frac{0.325}{(0.375)(2.325)} = 0.325 \text{ KLF}$
 $h = \frac{0.33}{26.65} = 0.325 \text{ KLF}$
 $A_{UN} = (0.33, 173)^{2} = 0.325 \text{ KLF}$
 $P = (33)(26.6) = 0.511.05 \text{ K}$
 $W_{B} = (0.3173)(2.325) = 2.20306 \text{ KLF}$
 $MCTUM PRECOMPRESSION STREESS:$
 $\sigma = \frac{0.3176}{24.76} = 2.95 \text{ FeI}$ (f_{T})

Appendix C – Post Tensioned Concrete Flat Plate

(INTERIOR BAM) TENDON FORLE LOUD TORACT DL'. NEEDED TO $\frac{(2,235)(31^2)}{(B(b|12))} = 537 \times$ P = PORLE: CHECK EXTERIOR FORLE FOR LISTERIOR 3.100 KLF 302 WB = (877.0)(0)(1/2) = 3.653 KLF > WPL WB FAILS FORLE: POST - TENSION MSIT LESS FIRST : INTERIOR PAG8 DEBIGO 35% DL AS GUIDELWE - USE WB = 100 (.85) (31) = KLF 2.635 $= \frac{(2.635)(31)^2}{(3)(.5)} = (333.0 \text{ K})$ P N = 433 = 24 CABLES (TENDONS) 24/266) = 215 PSI (Vac) PMET = 638.48 O NOT CHELK EXTERIOR BAY! INTERIOR POST TENSION POR ETERIOR DL. WB = (638.4) (B) (B.75/12) (31)2 3.100 1.63 -WB WDL VOK

Appendix C – Post Tensioned Concrete Flat Plate

Technical Report II

Life Sciences Building Prof. Andres Lepage

$$\frac{CHREX STREEDES UNDER LADWE! [INTERIOR RAM - THR]}{MIDSPNN STREEDES:
$$\frac{f_{mpr}}{f_{mpr}} = \left[-N_{01} - M_{01} + N_{001}\right]/S - P|A
\frac{f_{port}}{f_{port}} = \left[+N_{01} + M_{01} - M_{01}\right]/S - P|A
$$\frac{f_{mpr}}{f_{port}} = \left[-14.5 - 43.7 + 66.5\right]/2000 - \frac{665000}{29716} \qquad (a)
f_{top} = -166.351 - 223.454 = \left[-379.8 + 201.61 < 1800 Printing
f_{eort} = \frac{[14.5 + 43.7 - 64.5](12000]}{29760} - \frac{665000}{29716} \qquad (a)
f_{eort} = \frac{[14.5 + 43.7 - 64.5](12000]}{29760} - \frac{665000}{29716} \qquad (b)
f_{eort} = \frac{[156.351 - 223.454]}{29716} = \frac{160.500}{29716} \qquad (b)
f_{eort} = \frac{166.351 - 223.454}{1000} = \frac{1605000}{29716} \qquad (c)
f_{eort} = \left[-M_{01} - M_{11} + M_{02}\right]|S - P|A
f_{eort} = \left[-M_{01} - M_{11} + M_{02}\right]|S - P|A
f_{eort} = \left[-M_{01} - M_{11} + M_{02}\right]|S - P|A
f_{top} = \frac{(221 + 174.9 - 246)(12000)}{24716} - \frac{605000}{29716} \qquad (c)
f_{top} = \frac{(-227 - 174.9 + 266)(12000)}{3168} - \frac{665000}{29716} \qquad (c)
f_{eort} = -6122.601 - 2223.454 = \frac{1299}{29716} \qquad (c)
f_{eort} = -6122.601 - 2223.454 = \frac{1299}{29716} \qquad (c)
f_{eort} = -6122.601 - 2223.454 = \frac{1299}{29716} \qquad (c)
f_{eort} = -6122.601 - 2223.454 = \frac{1299}{29716} \qquad (c)
f_{eort} = -6122.601 - 2223.454 = \frac{1299}{29716} \qquad (c)$$$$$$

Appendix C – Post Tensioned Concrete Flat Plate

UTITIMATE STRENGTH! B" SLAB POST TENSIONED (INTREADE BAY) MOMENTS: PRIVARY POST SCICIOLOGIT UST. SUPPORT EXT, SUPPORT. 2 = 3.0 2=0 M, = 3(665) = (66.25 Pr.K M=D MOMESTS: SECONDARY POST TENSIONING M2 = 26625 - 16625 = 100 PEK M2 = O Pr.K - (LUNEAR VARIATION) -> APPLIED LOADUD MOMETTS: -1.2 (297) + -1.6 (174.9) + 100 = -536.2 FT.K SUPPORT: MEDDIE: -12(74.5) + -1.6(43.7) + 100 = 379.8 FT.K f= = -67.1PE1 (4) < 27/4000 MIDSPAUS: NO RENFORLEMENT SUPPORTS: A. MW = .00075 (B)(31)(12) = 2.232 W2 MWWWM REWFORLEMENT: - SPENNUNG 16 OF CLEAR SPAN ON EACH SIDE - AT LEAST 4 BARS IN EACH DIRECTION 161-#10 - BARS WITHIN 12" OF SUPPORT (LOLUW) DALE - WAX. BAR SPACUS IS 12" Acr = 12,6402 CHECK MIN. REWF. PML = (a) [(.6.0) (60) + (3.825) (195) [7 - .437174] = 544.3 KA An = 25 (153) = 3.025 a = 6(60) + 3.825(195) = .874" B5 4000 372) TRY (6) #9 BARS Ast = 6m2 ->

Appendix D – Concrete Waffle Slab

Life Sciences Building Prof. Andres Lepage

Appendix D – Concrete Waffle Slab

$$BAH = 31' \times 31' \qquad f'_{2} = 4000 \text{ PSI} \qquad f'_{4} = 60000 \text{ PSI}$$

$$DL = 10 + 20 = 30 \text{ PSF}$$

$$LL = 80 \implies 58,70 \text{ PSF}$$

$$TL = 88.7 \text{ PSF} \qquad TL_{pACT} = 1.4(30) + 1.7(58.70) =$$

$$TL_{FACT} = 141.79 \text{ PSF}$$

DEFLECTIONS

(ASSUMED TO BE ALLEPTABLE WHEN USING CRSE)

$$t_{z} = \frac{l_{z}}{33} = \frac{(31)(12)}{33} = 11.27''$$

$$\underbrace{USW6}_{CONSIDER} \xrightarrow{10''} \underbrace{OOMES}_{ONES} + 4.5'' SLAB \xrightarrow{OPAJ}_{OPAJ} = 32.33'$$

$$12'' DOMES + 3'' SLAB \xrightarrow{SPAJ}_{SPAJ} = 33.33'$$

USW6 30" x 30" DOMES							
CONSIDER	10"	DOMES	*	4.5	SUB	HAX. =	31.25
	12"	DOMES	4	3"	SUND	SPAN =	33.25

DESIGN 19" × 19" DOMES (TYPILAL INTERIOR BAY)

WAPPLE SLAB DUNENSIONS 10" + 4.5" 32 31' BAM BOT CREATE BE SPACED 70 DOMES p.slub. REDUME THAT 12" THE MAKING UP RIBO LARGER OF SUAD BY! RIBS WEREPSE Di LARGER KIBS 561B.75 50 4.5 14.5" ENDS RIBS 5437.5 10 14.5 -30 150 12 12 12" 15470,8 LBS 1.4(11056) = SUB = FACTOR DL OF 312 16 PSF TO SUAB DL ≽ ADD 141.79 + 16.10 = 158 PSF DL TOT -

Appendix D – Concrete Waffle Slab

Appendix D – Concrete Waffle Slab

Appendix D – Concrete Waffle Slab

Rib+ Slab	Equiv. Thickness	Max. Span in	Maxii	mum Span	Limited by	L/360 Defl	ection for l	Load Show	n Below
Depths (in.)	t _θ * (in.)	Tables (ft)	$L/t_{o}=30$	$L/t_{o}=31$	$L/t_{o}=32$	$L/t_0=33$	$L/t_e=34$	$L/t_e=35$	$L/t_{c}=36$
8 + 3	8.89	30	22'-3"	23'-0"	23'-8"	24'-5"	25'-2"	25'-11"	26'-8"
8 + 4½	10.11	34	25'-3"	26'-1"	27'-0"	27'-10"	28'-8"	29'-6"	30'-4"
10 + 3	10.51	36	26'-3"	27'-2"	28'-0"	28'-11"	29'-9"	30'-8"	31'-6"
10 + 41/2	11.75	38	29'-5"	30'-4"	31'-4"	32'-4"	33'-4"	34'-3"	35'-3″
12 + 3	12.12	38	30'-4"	31'-4"	32'-4"	33'-4"	34'-4"	35'-4"	36'-4"
$12 + 4\frac{1}{2}$	13.38	38	33'-5"	34'-7"	35'-8"	36'-10"	37'-11"	39'-0"	40'-2"
14 + 3	13.72	38	34'-4"	35'-5"	36'-7"	37'-9"	38'-10"	40'-0"	41'-2"
14 + 41/2	15.02	38	37′-7″	38'-10"	40'-1"	41'-4"	42'-7"	43'-10"	45'-1"
16 + 3	15.31	38	38'-3"	39'-7"	40'-10"	42'-1"	43'-5"	44'-8"	45'-11"
16 + 41/2	16.64	38	41'-7"	43'-0"	44'-4"	45'-9"	47'-2°	48'-6"	49'-11"
Maximum Immediate Deflection	Load (psf) f e (Elastic) n of <i>L</i> /360**	or	504	457	416	379	346	318	292

Table 11-3 Waffle Flat Slabs (19" x 19" Voids at 2'-0")-Equivalent Thickness and Maximum Load Based on L/360 Deflection

* Based on gross moment of inertia.
 ** For long-term (creep) deflection limited to L/360, multiply the long-term loads, including the waffle slab weight, times 2; deduct from loads shown above. Result is maximum superimposed service live load.

11-4

CONCRETE REINFORCING STEEL INSTITUTE

Table 11-1 Standard Dome Dimensions and Other Data

Dome	Dome	Volume	Floor Dead Load (psf per Slab Thickness				
Size	(in.)	(ft*)	3 in.	4.5 in.			
	8	3.98	71	90			
	10	4.92	80	99			
30-in.	12	5.84	90	109			
	14	6.74	100	119			
	16	7.61	111	129			
	20	9.30	132	151			
	8	1.56	79	98			
	10	1.91	91	110			
19-in.	12	2.25	103	122			
	14	2.58	116	134			
	16	2.90	129	148			

Appendix D – Concrete Waffle Slab

NOTE: Integrity reinforcement is required (ACI 13.3.8.5*). All bottom bars in the column strip must be continuous or spliced over the support with Class A tension lap splices. At least two of the column strip bottom bars in each direction must pass within the column core and be anchored at exterior supports.

For other end support conditions; see Figs. 11-2 and 11-3.

Figure 11-1 Reinforcing Bar Details and Layout

*All references to ACI 318-99 are given as "ACI" followed by the appropriate section number.

Life Sciences Building Prof. Andres Lepage

Appendix D – Concrete Waffle Slab

	_	_	_	_		_							
·			1 5 6 3 5 5 6 3 5 5 5 5 5	Top	No size	4	9-45 9-45 9-45 9-45 12-45	10-45 10-45 10-45 10-45 10-45	10-45 10-45 12-45 10 #5	11-45 12-45 10-45 12-46	12-45 14-45 12-46		
$f_c' = 4,000 \text{ p}$ Grade 60 Bar		c	e Strip		Short Bars	Ф=3	22238	22228	2228	2222	222		
	S	Directic	Middl	Battom	Bars	ab Dep	*****	*****	****	म म म म	32 32 32 32		
	SQUARE INTERIOR PANELS	Reinforcing Bars-Each D			No. Ribs	otal St			2222	EEEE	===		
				Top	No sue		22-45 25-45 21-48 21-48 27-48	2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)	近 32 35 35 35 35 35 35 35 35 35 35 35 35 35	· · · · · · · · · · · · · · · · · · ·	34-85 33-48 37-48		
			Column Strip	Bottom	Bars per Rib	i Depln = 12 in.	2-64 1-84 and 1-65 2-65 1-85 and 1-68 2-67	2-44 1-64 and 1-45 2-45 2-66 1-65 and 1-47	1-04 and 1-45 2-05 1-05 and 1-46 1-88 and 1-47	2-45 1-45 and 1-46 2-46 2-47	2-415 1-015 and 1-405 2-416		
					No. Ribs	22		アアアアア	N. N. N. N.	NNNN	80.80.80		
		Square Interior Column		767	Stirrups	15 în	4561 4561 4562	4361 4361 4362	4561 4561	4561	4561		
					iji) S	apth = 1	222222	19 1	4444	80 8	19.	1	
24		(1) Steel				Total D	22855588 2885588	224 241 329 4.12	234 305 305	2.96 2.96 3.39 4.23	2.65 3.13 3.82		
8				3	the the the the the the the the the the		\$\$\$£28	526 557 918 918 1151	7385 866 866 866	742 929 1111 1285	879 1007 1304		
Rib	ANELS	Moments		W+	Bot. (ft-k)	****	319 518 680 882	888 860 550 888 888 888 888	683 200 200 200	128885	555 518 518		
" Voids: 5"				-M Edge			200 200 200 200 200 200 200 200 200 200	204 204 204 204 204 204 204 204 204 204	2222 2222 2322 2322 2322 2322 2322 232	276 345 413 477	326 407 484		
		Reinforcung Bars-Each Direction	Middle Strip	Top	No: Size		8489089 888888	001101 88010 88388	10-45 10-45 10-45	11-05 12-65 15-65 12-66	12-45 15-45 13-46		
					Long Short Bars Bars		TTTRE	放射的形成	####	进起起感	波筋塔		
19				ottom			85 85 85 85 85 85	*** *** ***	変変変劣	<u> 국</u> 국 국 유	84 85		
×					No. Ribs				2222	====	===		
1 19				Top.	No size	Bars per Rib No-	22-45 22-45 27-45 22-46 22-46	24.45 22.45 35.46 35.46 35.46	1949 1945 1945 1945 1945 1945 1945 1945	新 新 第 第 第 第 第	近 第 第 第 第		
SYSTEN			mn Strip	Bottom	Bars per Rib		2:45 1:46 and 1:46 1:48 and 1:47 2:47 2:48	2-45 1-45 and 1-45 1-48 and 1-47 2-43 2-43	1-45 and 1-46 2-46 2-47 1-47 and 1-40	2.46 1.46 and 1.47 1.47 and 1.48 2.48	2:46 2:47 1:47 and 1:48		
B	GEF		Colu		No. Ribs			~~~~	アアアア	NNNN			
IT SLA	RE ED			Top	No size +	dh=3 n.	22.45+0 22.45+0 22.45+1 22.45+1 22.45+1	24:45+0 24:45+6 24:45+6 24:45+6 24:45+3 24:45+6 24:45+6	四-45+0 四-45+0 四-45+2 四-45+2	27-45+3 27-45+8 27-45+8 27-45+4 27-45+4	28-45+7 28-45+12 28-45+6		
EFLA	SQUA		Column	6	Yr Strrups Total Slab De				4561		1.		
FFL			e Edge			P	0.795 0.835 0.835 0.835 0.835 0.835 0.835 0.835	0.813 0.896 0.896 0.817 0.896 0.817 0.625	06000 2000 2000 2000 2000	0.863 0.915 0.627 0.627	1250 1250 84290		
WP			Squar		201 (iu)	12 in.	82928 ***	8994 894 894 894 894 894 894 894 894 894	244 244	222 222 222 222 222 222 222 222 222 22			
	1111			ε	()sq ()sq epth =		2250 2255 327 327 438	2280 3385 385 385 467	252 339 408	2270 3371 455	2.83 3.45 4.11		0
	11日日 日日			Factored Super- imposed Load (pel)		RbL	300 300 300 300 300 300 300 300 300 300	200 200 200 200 200 200 200 200 200 200	8538	2015100 2015100	50 100 151		Dave 11-1
			Cran	Span Fact c_{-E} Sy Columns Inp $\ell_1 = \ell_2$ Lc $\ell_1 = \ell_2$ Lc		Total Depth = 15 in.	32- 0" Di=10.417 RIB NOT 01 COLUMN LINE COLUMN LINE	22- 0" D=12.417 BB 0N 0000MH LINE 0.766 GFISF	34-0 D=12417 BB 0N COLUMN LINE 0757 GF/SF	367-0" D=12.417 BB 6N D0LMM LINE 0.749 CF/6F	36- 0" D=94.417 RB NDT ON DOLLWM LINE 0.763 CF/SF	394	Saw the police on

Kirk Stauffer Life Sciences Building Prof. Andres Lepage

	Structural Option
The Pennsylvania State University	y, University Park, PA
	October 29, 2007

Appendix D – Concrete Waffle Slab

= 4,000 psi trade 60 Bars			Removing bars—Each Unexcion Column Strip Middle Ship	Top	Ma size	Ľ.	845 845 845 845 845 845 845 845 845 845	845 845 845 845 845 845 1045	945 945 945 945 945 945	10:45 10:45 10:45 10:45 10:45	10.45 10.45 10.45 12.45	11-45 11-45 12:45 10:46	12:45 12:45 14:45 16:45						
		c		Middle Strip	Middle Strip	Middle Strip		Short Bars	h=3	*******	****	*****	*****	****	मममम	22222			
	S	Directio					Midd	Midd	Midd	Midd	Midd	ottom	Bars	ab Dep	******	*****	*****	12121	****
	INTERIOR PANELS	Reinforcing Bars-Each L			Mo. Rites	otal St	*- *- *- *- *- *-	00 00 00 00 00 00		5 5 5 5 5	2222	====	====						
*°0				Top	No size		19-45 19-45 19-45 20-45 20-45 20-45 20-45 20-45	22222 2525 2525 2525 2525 2555 2555 25	22-45 22-5 22-	24-45 24-45 30-45 30-45 27-88	25-45 28-45 31-45 25-48	27-45 31-45 26-45 30-48	30-45 26-45 31-45 38-46						
				Bottom	Bars per Rib Depth = 16 in.	2-44 2-44 1-04 and 1-05 1-05 and 1-06 1-05 and 1-06	2-44 2-44 and 1-05 1-04 and 1-05 1-05 and 1-05 1-05 and 1-05 2-48	2-a4 2-a4 2-a6 2-a6 2-a6	2-44 1-64 and 1-95 1-64 and 1-95 1-85 and 1-85 1-86 and 1-87	1-84 and 1-85 1-84 and 1-85 2-85 2-86	1-04 and 1-05 2-05 1-05 and 1-05 1-05 and 1-07	1-04 and 1-05 2-05 1-05 and 1-06 1-06 and 1-07							
	ARE				No. Ribs	范	~~~~~	~~~~~	99999	t- t- t- t- t-	P P P	8-19-19-19-19-19-19-19-19-19-19-19-19-19-							
	squ	guare r Column		10	Stimutes	19 in.	4 8 6 1	4 5 6 1 4 5 6 1	4561	4 5 8 1	4 5 6 1	4561	4 55 1 5 5 1 5 5 1						
2		0	Surtherio		$c_i = c_2 \\ (in.)$	hepth =	00000000	******	នាននាន់ខ្	*****	000 *	8888 8	新設設 * ,						
24				3	Stael (psf)	Tiotal D	22238222 2828282	2288822	222222 222222 222222 222222 22222 22222 2222	228 228 372 372	238 288 317	238 298 359	241 278 3.18 3.91						
8 8				利用的			828 847 87 87 88 88 88 88 88 88 88 88 88 88 88	417 585 585 585 585 585 585 585 585 585 58	\$10 619 727 1063 1063	1288 1288 1288 1288 1288 1288 1288 1288	746 904 1220	882 1069 1257 1444	1065 1486 1706						
Rib			oments	Ņ	Edge Bot. (fi-so (fi-so)		86453362	310 375 580 791 795 995	373 565 704 704	484 585 587 587 587 587 587	555 2585 2605 2605	655 794 1168	776 940 1369						
: 2			M	Ą			2000年1000日	2288839	36.02 200 340 200 200 200 200 200 200 200 200 200 2	28885	128833	300 961 958	꽃순성호						
oids		Reinforcing Bars – Each Direction	Column Strip Middle Strip	Top	No size	4090	2222222222 22222222222 222222222222222	******	****	0000 8800 8808 880	10-45 10-45 11-45 12-45	동문(1) 동문(1) 동문(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	12-65 12-65						
>					Short Bars	****	******	स स स स १२ <i>१</i>	TTTEE	****	建盐烧烧	****	2688						
19				ottom	Bars	4444	*****	****	*****	222225	****	35 34 35	\$\$\$\$						
×				-	No.		NNNNNN				2222	====	====						
1 19				Top	Mar- Size	Mo No size + Rites Bars per Rob Mo size pin=3 in	19-45 19-45 19-45 21-45 21-45 22-46 22-46 22-46	2145 2145 2145 2145 2145 2145 2145 2145	22.45 22.45 23.45 23.45 23.45 24.45 24.45	24.45 24.45 23.46 23.46 23.46	25.45 28.45 24.46 27.46	28-45 34-45 28-46 33-46	33.45 28.46 34.46 39.46						
SYSTEN	PANELS			Battam	Bars per Rib		2-44 2-44 1-44 and 1-45 2-45 2-45 2-45 1-47 and 1-48	2.44 1.44 and 1.45 2.45 2.45 2.46 2.46 1.47 and 1.48	1-#4 and 1-#5 2-#5 1-#5 and 1-#6 1-#7 and 1-#8	2.45 1.45 and 1.46 2.46 1.48 and 1.47 1.47 and 1.43	2.45 2.46 1.46 and 1.47 2.47	1-45 and 1-46 1-46 and 1-47 2-47 1-47 and 1-48	2.46 1.46 and 1.47 2.47 1.47 and 1.48						
B	GE				Ma. Ribs			000000000		P. P. P. P. P.	~~~~	P= P= P= P=	8888						
AT SLA	ARE ED			Top	No size +		19-45+ 0 19-45+ 0 19-45+ 0 19-45+ 0 19-45+ 0 19-45+ 0	21-45+0 21-45+0 21-45+0 21-45+0 21-45+1 21-45+0 21-45+0	22-45+ 0 22-45+ 0 22-45+ 0 22-45+ 0 22-45+ 0 22-45+ 0	24.45+ 0 24.45+ 0 24.45+ 0 24.45+ 0 24.45+ 0 24.45+ 1	这书+1 这书+1 这书+1 这书+1	27-45+ 0 27-45+ 1 27-45+ 5 27-45+ 5 27-45+ 2	28-28-19 28-28-16 28-28-16 28-28-16 28-28-16 28-28-16 28-28-16						
E FL/	sour		Column	ĝ	(2) Stimups tal Stab Do	otal Slab D													
FFL			e Edge		Å	*1	0.662 0.682 0.750 0.750 0.809 0.805 0.641	0.688 0.720 0.752 0.753 0.753 0.753 0.753 0.639	0.689 0.735 0.770 0.806 0.806	0.722 0.760 0.798 0.848 0.848	0.733 0.775 0.824 0.882	0.754 0.805 0.867 0.634	0.774 0.847 0.899 0.633						
M			Squar		D = Dr [[D]	16 in.	22222222	******	222222	22222		***	82 82 82 82 82 82 82 82						
				Ē	Side(228 238 333 337 333	228 288 382 382 382 382 382 382 382 382	223 265 265 265 265 265 265 265 265 265 265	2280 2358 336 413	243 368 354	53888 58888	2268 3310 4.21	, ci					
			Factored Super- Imposed Load S			RbL	85288888	885888	88388	88388	8538	8838	8838	Page 11-1					
			Span Fac		$\ell_1 = \ell_2$ (0)	Total Depth = 19 in.	26-0" D=10.417 RB NOT ON COULIAN LIVE 0.967 CF/SF	28- 0" D=10.417 818 NOT ON COLUMN LINE 0.562 CF/SF	30°-0" D=10.417 R8 MOT 0N COUUMN UNE 0.540 CF/SF	32- 0" D=12417 D=12417 BB 0N COLUMN UNE D361 CF/SF	34- 0" D=12417 RIB DN COLUMN LINE D_960 CF/3F	36-0" D=12-417 RB 0N COUJWH LINE 0.340 005/65	38- 0" D=14.417 RB NOT CN COLUMN LINE U388 CF/SF	See the notes on					

11-46

Life Sciences Building Prof. Andres Lepage

Appendix D – Concrete Waffle Slab

$f_c' = 4,000 \text{ psi}$ Grade 60 Bars		g Bars-Each Direction	Column Srip Mrodle Strip	Top	No Size	.e	88889 889 889 889 889 889	10-45 10-45 10-45 10-45 11-45 11-45	10.45 10.45 10.45 10.46 10.46	11-45 15-45	12-15 15-15 13-85 13-85					
	1111			le Strig	e Strip		Short Bars	=4/4	22228	44488	2228	2228	222			
	S			Bottom	Bars	Depth	****	****	***	****	***					
	R PANEL				No. Ritis	al Sab	- - - - - - - - - - - - - - - - - - -	<i></i>	2222	3333	===					
				Top	No size	Tot	22.45 22.45 22.45 22.45 22.45 22.45	23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	23 23 23 23 23 23 23 23 23 23 23 23 23 2	将帮助 19	19 19 19 19 19 19 19 19 19 19 19 19 19 1					
	INTERIO	Reinforcing		Bottom	Bouuni Bars per Rib	s Depth = 10 in.	2-#0 1-#6 and 1-#5 2-#5 2-#6 2-#6	1.44 and 1.45 1.44 and 1.45 1.45 and 1.45 1.46 and 1.46 2.45 1.48 and 1.47	1-#4 and 1-#5 2-#5 1-#6 and 1-#6 1-#6 and 1-#7	2.45 1.45 and 1.46 2.46 1.46 and 1.47	2.45 2.48 1.48 and 1.47					
	ARE	1274		1201	Ribs	82	66666	h- h- h- h-	*-*-*-	t- t- t-	00 00 00					
	sộu	Square Interior Column		Υ.	Stimups	4% in.	3541 3541 3542	200 200 200 200 200 200 200 200 200 200	3333 5555 544 544	53 55 55 54 54 55 54 54 55	3541					
				3	$\frac{\gamma_{1}}{(m_{1})}$	= thde	សសង្ខស្ដុះ	899 199 199 199 199 199 199 199 199 199	12.22	8 9 9 9 8 9 9 9	800. ***					
24		2424	0.203 8.824 8.924 8.924	Ξ	Steel (rsh)	Steel ([ps])	(ref)	Total D	222 233 313 412	237 255 255 431	2.73 3.82 3.82 3.82	260 355 427	278 348 414			
8	114,31			*	line (je-ji)		848 885 987 987 987	548 613 811 905 1150	812 812 865 110	774 962 1138 1288	916 1128 1322					
Rib		oménts		+M Bot (h+k)			333 313 652 652 855 855	407 505 620 778 854	486 603 717 900	575 214 267	680 838 882					
: 5	ANELS		N	10-	-M Edge (h-k)		200 J 100	· 454 382 383	243 302 358 412	238 357 423 423	819 191					
" Voids		Reinforching Bars-Each Direction	Column Strip Middle Strip	Top	No size		886 886 860 860	10-8-01 8-01 8-8-8-8- 8-8-21 8-8-21	10-85 11-85 11-85 11-85	11-85 11-85 13-85 13-85	13-85 13-85 13-85	10 C				
					Short Bars		*****	*****	4566 4	****	12 12 12 12 12 12					
19				NOTION I	No. Long Nbs Bars		****	****	88 88 88 88 88 88 88	222 S 222	推搭把					
×							an an an an an	a a a a a	8888	====	===					
1 19				Top	No Size		22.45 24.45 21.46 21.46 23.47 23.47	名称200万元 第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	指 約 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23年2 23年2 23年2 23年2	33.45 23.47 24.48					
SYSTEN				Bottom	Bars per Rib		2.45 1.45 and 1.46 1.48 and 1.47 2.47 2.48	2.45 2.46 1.46 and 1.47 1.47 and 1.48 1.47 and 1.48	1-45 and 1-46 1-46 and 1-47 2-47 2-48	2-46 2-47 2-46 2-48	1-46 and 1-47 2-47 1-47 and 1-48					
B	SE P				No. Ribs				アナアア	[] [00 00 00					
VI SLA	ARE ED(100 Erice	No size +	size + 1 = 4% h.	22-45-0 22-45-1 22-45-1 22-45-1 22-45-2	24-45-4 24-45-4 24-45-2 24-45-2 24-45-4 24-45-4	8888 8888 8888 8888 8888 8888 8888 8888 8888	218-55 218-55 218-55 218-55 218-55 218-55	28-45+9 28-45+14 28-45+7					
E FLA	squa		Column	ē	Stimups Stab Dept			3541		3541						
FFL			e Edge		Ϋ́	Tota	0.817 0.854 0.814 0.651 0.651	0.836 0.836 0.631 0.628 0.628	0.857 0.914 0.626 0.626	0.623	0.904					
WA			Squar		्र म	10 in.	2455.5	22222B	144.	28899						
	1420 1422 1542 1542	12421		(1) Beel O		epth =	2322237	\$25528 \$25528 \$	439908 439908	2331 2331 2331 2331	310		ő			
			Super- Super- Load Science Load Science		(psd)	RbD	00 200 200 200 200 200 200 200 200 200	000 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 200	00 100 100		Page 11-1			
						Shan	Commes	$\hat{F}_1 = \hat{F}_2$ (ff)	Total Depth = 14% in.	30-0" D=10.417 RIB NOT ON COLUMN LINE 0.784 CF/SF	22-07 DF12417 BIB 041 COLUMAN LINE 0798 CF/SF	341-07 D=12.417 B18_0.01 0.730_05/35	36:-0* D=12.417 RB 0N COLUMN LINE 0.734 G7/SF	381- 0" D=14.417 RB NOT ON COUMMULINE 0.796 CF/SF		See the notes on

11-50

Appendix E - Composite Steel Deck on Composite Steel Beams

Appendix E - Composite Steel Deck on Composite Steel Beams

Appendix E - Composite Steel Deck on Composite Steel Beams

CHECK THREAL WIGX26 REDAK
COMPOSITE ACTION WI 15 CHECK STUCS

$$EQ_{A} = [199.5^{K} Y_{2} = 6.5^{u} - \frac{197.5}{17(9)(93)} = 6.18^{u}$$

 $f_{AVA} = 311 KPT$

 $a = \frac{199.5}{.85(9)(93)} = .03092^{u}4$

 $C_{L} = .85(9)(93)(.63093) = 119.5^{k}$

 $T_{5} = 7.00 150) = 3.84^{k}$

 $T_{5} = 384 - 174.5 = \frac{184.5^{k}}{2} = 92.25^{k}$

 $C_{L} = .92.25^{k}$

 $T_{5} = 92.25^{k}$

 $T_{6} = 92.25^{k}$

 $T_{7} = 242.5^{k}$

 $T_{7} = 92.25^{k}$

 $T_{7} = 242.5^{k}$

 $T_{7} = 92.25^{k}$

 $T_{7} = 92.25^{k}$

 $T_{7} = 242.5^{k}$

 $T_{7} = 242.5^{k}$

 $T_{7} = 345^{u}$

 $T_{7} = 345^{u}$

 $T_{7} = 345^{u}$

 $T_{7} = 345^{u}$

 $T_{7} = 92.25^{k}$

 $T_{7} = 92.25^{k}$

 $T_{7} = 243.53 Fr \cdot k$

 $T_{7} = 343.53 Fr \cdot k$

 $T_{7} = 7.71.9 Fr \cdot k$

 $T_{7} = 7.71.9 Fr \cdot k$

 $T_{7} = 7.71.9 Fr \cdot k$

 $T_{7} = 7.72.91.9 Fr \cdot k$

Appendix E - Composite Steel Deck on Composite Steel Beams

GIRDER IS ACCEPTABLE.